

The Story in the Notebook: Exploratory Data Science
using a Literate Programming Tool

Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1

1Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA
mkery, mahimaa, bam @cs.cmu.edu

2Amherst College

Amherst, MA
mradensky19@amherst.edu

3Bloomberg L. P.
New York City, NY

bjohn11@bloomberg.net

ABSTRACT
Literate programming tools are used by millions of
programmers today, and are intended to facilitate presenting
data analyses in the form of a narrative. We interviewed 21
data scientists to study coding behaviors in a literate
programming environment and how data scientists kept track
of variants they explored. For participants who tried to keep
a detailed history of their experimentation, both informal and
formal versioning attempts led to problems, such as reduced
notebook readability. During iteration, participants actively
curated their notebooks into narratives, although primarily
through cell structure rather than markdown explanations.
Next, we surveyed 45 data scientists and asked them to
envision how they might use their past history in a future
version control system. Based on these results, we give
design guidance for future literate programming tools, such
as providing history search based on how programmers recall
their explorations, through contextual details including
images and parameters.

Author Keywords
Literate Programming; Exploratory Programming; Data
Science; End-User Programmers (EUP), End-User Software
Engineering (EUSE)

ACM Classification Keywords
H.1.2 User/Machine Systems: Software psychology; D.2.6
Programming Environments.

INTRODUCTION
As more and more people want to make use of the abundance
of available data, there is a fast growing population of end-
user programmers who are using the power of programming
to work with data. Analyzing data through code has long
been the domain of end-user programmers, including
computational scientists, mathematicians, researchers, and
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions fromPermissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3173748

engineers, many of whom never receive formal training in
software engineering [30].

As even more technical novices engage with code and data
manipulations, it is key to have end-user programming
tools that address barriers to doing effective data science. For
instance, programming with data often requires heavy
exploration with different ways to manipulate the data
[14,23]. Currently even experts struggle to keep track of the
experimentation they do, leading to lost work, confusion
over how a result was achieved, and difficulties effectively
ideating [11]. Literate programming has recently arisen as a
promising direction to address some of these problems [17].
It originates from a 1984 paper by Donald Knuth:

“Time is ripe for significantly better documentation of
programs, and that we can achieve this best by
considering programs to be works of literature” [17:1]

Knuth’s philosophy held that humans should write code
foremost as a natural language prose expression of their
reasoning, which a literate programming tool facilitates by
allowing formatted text annotations to be rendered inline
with plain code. The actual computer code would be a
secondary translation of these essay-like annotations [17].
Knuth’s intended audience, mainstream software
engineering, largely did not adopt the idea. Arguably, literate
programming is a poor fit to software engineering, as
documentation quickly gets out of date and is costly to
maintain [18,21]. Heavy annotations also conflict with the
idea in software engineering that well-structured code should
“speak for itself” and be understandable with minimal
documentation [19].

Yet in a different community, programming for math and
sciences, literate programming has thrived since 1988 in
tools such as Mathematica [13]. For a biologist, physicist or
financial analyst who codes an analysis, there may be
theories and equations embodied in their source code which
could benefit from additional explanation as formatted
equations or images [31]. By allowing the mix of any media
needed to understand domain-rich code, literate
programming has gained an important role in the sharing and
reproducibility of computational analyses [31][16]. Today,
open source literate programming tools like Jupyter
notebooks [24] and knitr [31] have become hugely popular,

with millions of users across a wide range of expertise and
subject domains.

Although literate programming currently aids a programmer
to communicate an analysis [26] data science tasks are
known to be highly iterative and exploratory [9]. For every
useful model feature or insightful visualization data
scientists create, there may be many less-successful features,
plots, or analyses they have tried. In order for the original
programmer or another person to improve and build upon
their work, knowledge of this exploration is important. Data
scientists need to keep track of what they have attempted,
including failed approaches, to justify why they choose
certain approaches over others and to be more effective in
their ideation [11]. Current approaches, including traditional
version control, have been found to be ineffective or require
high amounts of tedious manual note taking on part of the
data scientist [14]. With the increased ability to keep code,
data, input, and output together in one document, we
wondered if literate programming helps data scientists retain
the story of their in-progress exploration. Some in the
scientific computing literature say yes. An article in Nature
says that a literate programming tool like Jupyter notebooks
“helps researchers to keep a detailed lab notebook for their
computational work” [26]. However, although literate
programming is an essential and distinct kind of
programming in data computing today, there have been no
studies on how literate programming affects data scientists.
In this paper we present two studies that investigate how data
scientists explore ideas as they develop code, and how and
why they develop a narrative structure in a literate
programming tool.

In our first study, we interviewed 21 professional data
scientists who use Jupyter notebooks, a popular literate
programming tool in data science with over 2 million users
as of 2015 [25]. We found that although notebooks are
limited in how they can be used to keep a detailed record of
all explorations, several patterns of curatorial behavior
emerged during iteration to build narrative.

In a second study, we probed how future tools may improve
data scientists’ interactions with exploration history. We
surveyed 45 data scientists and asked how they might use
historical records of their analyses if they had a magical
oracle to deliver any prior analyses content to them. These
results revealed highly varied ways of interacting with
history. Finally, we discuss implications for future research.

BACKGROUND & RELATED WORK

Data Science & Exploratory Programming
How do data scientists get to the final computational
analyses? Guo [6] described the process for obtaining
insights from data as having four phases: preparation, where
data is acquired and cleaned, an iterative cycle of analysis,
where code is written, inspected, and debugged, and
reflection to interpret the outputs and suggest alternatives,
and dissemination of the results in the form of written

reports, raw results such as plots, or shared scripts [6]. We
consider the iterations in the first three of these phases to be
"exploration" [12], in which the programmer’s goals for their
program evolve by writing and testing code instantiations of
different ideas. Some recent work has looked at exploratory
programming for data science work [10,14,22], however not
in the context of literate programming. Prior exploratory
programming work has found that programmers
conceptualize a narrative as they try to understand someone
else’s code [27], but that programmers create rather
haphazard adhoc code during their own exploration [3,14].

Notebook programming environments
A “notebook” environment is one particular genre of literate
programming tools that is supported by many data-centric
literate programming tools such as Jupyter Notebooks,
Mathematica [13], Databricks [34], Apache Zeppelin [7],
and Sage Notebooks [5]. Although here we specifically study
Jupyter Notebooks, we report on the usage of core features
like cell structure, cell layout, and cell types, which are
common features to this entire genre of tools and should
allow our findings to generalize more broadly.

A notebook environment supports chunks of content, called
“cells.” A cell can contain code, output, a table, a plot,
formatted “Markdown” text, or other kinds of media. For
example, the first cell in Figure 1 contains formatted
Markdown text (indicated by no background color and no
number in the left margin), the second cell contains python
code (labeled In [4]:), and the third contains the graphical
output of that code (labeled Out [4]:), which is updated
each time the code in that cell is run.

Figure 1. Excerpt from a Jupyter notebook [8]

With a notebook, a programmer can produce a literate
program that fits Knuth’s ideal definition: a chronological
progression of Markdown cells, code cells, and output cells,
explaining everything from top to bottom. However, the
notebook environment does not enforce this structure. A
programmer is not forced to add Markdown explanations or
any code comments. A notebook also allows each code cell
to be edited and run individually at any time in any order, so

rather than running the entire file from top to bottom, or only
editing at the end of the notebook, programmers can pick and
choose which code cells they would like to edit and run. As
notebooks do not actually enforce a literate style, the
programmers’ situational needs are likely what motivates
them to create a coherent literary-style document or not.

Literate programming tool developers ask their users for
feedback. For example, in 2015, the Jupyter Project surveyed
over 1000 users, on general usage, pain points, and feature
requests [33]. They reported a quantitative analysis of all
data, including keyword frequency counts on free-text
responses. Version control was the most highly requested
feature, although what the respondents meant by “version
control” and what pain points it was intended to resolve was
not probed. In addition to these data, there are many public
examples of Jupyter notebooks online (for instance, a simple
search on GitHub yields over 89,000 notebooks). However
the artifacts themselves do not provide enough detail about
small-grained iterations and intention [32] to answer our
research questions, requiring us to use different methods to
understand how data scientists explore ideas.

Lab notebooks and scientific documentation
Lab notebooks are a log of scientific activity that contain
enough detail for a scientist to later reproduce their
experiments [15]. Lab notebooks are ideally immutable logs
once written, in order to serve as legal evidence of discovery
in patent cases or questions of scientific validity [15]. Lab
notebooks take the form of paper, digital note-taking tools,
and hybrids between paper and digital notes [29]. Prior
studies have explored the design needs that scientists have
for their lab notebooks and their struggles with searching and
maintaining scientific records [15,20,29]. Notebook
programming, like any digital tool that can record text, can
be used as a lab notebook [26] but can also serve many other
purposes. Prior studies have largely focused on wet-lab
scientists, whereas a chief difference in our current
behavioral study is our sample of computational analysts
who primarily work through code. Thus our investigation is
not just on the record keeping, but on the iteration of their
primary work through code.

STUDY 1

Method
To get as unbiased a view as possible of data scientists
working with a literate programming environment, we
followed the Grounded Theory Method (GTM) described by
Corbin and Strauss [4] for data collection and analysis. We
had the opportunity to collect data at the inaugural
conference for Jupyter Notebook users (JupyterCon 2017).
This provided a concentrated sample of people who have
experience using Jupyter notebooks for real-world
professional data analysis programming. Participants were
recruited through conference speakers announcing the
activity and organizers tweeting about it.

We interviewed 25 participants, but 4 were removed from
our analysis because these interviewees turned out to be
managers or otherwise did not personally do data analysis in
notebooks. The final 21 interviewees held job titles shown in
Table 1 and reported gender identity of 19 men, and 2
women. Interviews lasted 10 to 30 minutes, based on the
participant’s availability.

Role Participant
College teacher & researcher IP01, IP02, IP10, IP15, IP17
Financial analyst IP05, IP06
Computational Biologist IP08
Software Developer IP19
Data visualization designer IP03, IP04, IP21

Data Scientist IP07, IP09, IP11, IP12,
IP13, IP14, IP16, IP18, IP20

Table 1. Interview participants’ primary job roles

The interviews were planned around a few open-ended
questions, beginning with an overview: “Please tell me
briefly what you use Jupyter notebooks for?”. The next probe
asked for details of what the interviewees did in notebooks
to develop their ideas from inception to final result (over
60% of the interviewer’s utterances were on this topic). If
participants had their laptop with them, they were invited to
show the interviewer their actual notebook documents, and
four of the participants did. Our other planned questions
involved sharing with other people, the use of markdown
cells and code comments, the size of code cells and
notebooks, and version control. Specific questions were
generated on the fly in response to interviewees’ answers e.g.
“You mentioned that you've used version control, and you've
also used a sort of numbering scheme. Is there any reason
why you do one or the other?” Due to time constraints and
which topics a participant expressed the most details on, not
all interviews touched on all topics.

Analysis
After transcribing the 21 interviews, the first author did a
line-by-line open coding on a random sample of six
transcripts and produced a coding guide. The open coding
evolved through this process. For example, codes for
prototyping, experimenting, testing, and iterating were
abstracted into Testing Ideas. Following the advice in [4]
about avoiding bias through allowing scrutiny of the analysis
by others, we used inter-rater reliability as an indication that
these codes were meaningfully defined. The fourth author
used the guide to code one of the transcripts, disagreements
were discussed and the definitions improved. Both authors
coded another transcript with the new guide and attained a
Cohen’s Kappa of 0.82. The fourth author then coded all
transcripts using the new guide. Codes continued to evolve,
primarily in sub-topics, e.g., Annotating became Annotating
with Markdown and Annotating with Code Comments.

Limitations of the Data Collection and Analysis Method
Interviewing attendees at JupyterCon2017 is an example of
“convenience sampling”, as target participants were
congregating at a single place, for a short period of time, and
we could obtain permission and physical space from the
conference organizers. Interviewing was a condensed and
intense activity, with no time in between interviews in which
to interweave analysis as is normal in GTM. Therefore, this
study should be considered the first step in a research
program and we provide recommendations for theoretical
sampling at the end of the paper. Although four participants
showed us examples of their work, subsequent data
collection should consider doing field-based contextual
inquiry [1] to better ground the data in observable behavior.

Results and Discussion
Interview participants will be referred to as IP01 to IP21 (see
Table 1). First we discuss participants’ use cases in the
notebook environment, and then their iteration behaviors.

Use Cases
Our data revealed three use cases for notebooks: (1)
preliminary “scratch pad” work, (2) work that ends up
extracted out of the notebook for use in a production pipeline,
and (3) work intended to be shared in different ways. These
use cases are not disjoint. Pieces of code from a scratch pad
can be extracted out into a script for use in a production
pipeline. Code extracted for production is sometimes also
shared with others via a detailed literate notebook complete
with graphics and Markdown explanations.

Scratch Pad Use Case: Almost half our participants (10)
used notebooks as scratch pads; 6 explicitly used that term.
By this they meant they wrote code cells that they expected
to be preliminary and short-lived. Scratch pads were used to
answer a specific question, such as how to debug a piece of
code, test out example code from the internet, or test if an
analysis idea was worth pursuing further.

”I was just testing to make sure I had the syntax right
on these tuples.” - IP13

“OK so can we do k-means on this dataset and like does
it make sense” - IP11

Scratchpad use appeared on two levels. “Scratch cells” were
used within a notebook during exploration.

”only the last [cell] you did is actually useful so you get
rid of some of this sort of trial and error-y things” -
IP18

At a higher level, some participants had whole notebooks
that they used only for scratch work.

“In fact, I have a whole scratch directory where I just
run a Jupyter server there and make a notebook, do
something real quick and that’s easier than just about
anything else.” - IP17

Since scratchpad work was intended to be short-lived,
participants did not spend time annotating it. However, when

the results of scratchwork were successful, that code was
extracted out to a permanent place or transitioned from a
scratchpad to a substantial literate document.

Production Pipeline Use Case: Seven participants reported
that finished code was incorporated into a bigger code base.
Finished code had to be extracted out of the notebook and
placed in a plain-text code file when it was needed in a larger
production pipeline because the extra metadata in a notebook
file made it unusable by automated processes.

Sharing Use Case: Almost all our participants (20 of 21)
shared the results of the analysis in a notebook, or the
notebook itself, with someone else. These notebooks were
typically significant explorations, included developing a
model, conducting computational research, or creating a
comprehensive analysis. Participants iterated on these
analyses over the span of days to months, and generally took
care in adding structure to these notebooks, as we will
discuss later. Five participants were teachers who gave
notebooks to their students for structured assignments:

“We do all of our teaching through notebooks. This
includes lectures... in notebooks... then we give them
projects to work on... in the form of notebooks.” - IP17

Two other participants shared notebooks with clients:

“not only for the actual data exploration myself but
then to communicate the results of that effectively back
to the person that asked me to do the work.” - IP08

Twelve shared with collaborators or teammates:

“I think the reason I use Jupyter is because it actually
allows me to share the process by which I arrive at
results with people who I want to convince of
something, both so that they can spot any errors I may
have made and also that they can use similar techniques
in their own work.” - IP18

Two others referred to sharing with their future selves:

“And the idea is to comment them enough… [if you]
came back next year would you understand exactly
what the notebook was supposed to be doing.”- IP13

If any sharing was anticipated, including with a future self,
participants reported putting extra care into making sure the
notebook was clear to read.

Although notebooks themselves were shared, especially by
teachers, many other formats for sharing were mentioned.
For example, both financial analysts said they shared results
in Excel. Other participants mentioned JPGs, HTML, PDFs,
and slides. Today, this is often a necessity:

“most of my clients don't have Jupyter installed on their
machines so I can't just give them a notebook file.”-
IP08

On the other hand, five participants were enthusiastic about
sharing interactive widgets which can be added as extensions
to a cell to allow a reader to tune variables:

“Being able to have them… play with things will be a
huge step forward… that would definitely have to be a
centrally hosted kind of thing, because we're not going
to expect anyone to download Jupyter”- IP08

Iteration Behaviors
Organizing the notebook while iterating: Participants
reported different strategies for organizing their notebooks
while iterating on the code. For example, the bottom of the
notebook was used in idiosyncratic ways: two participants
reported coding top-to-bottom so the most recent code was
always at the bottom; one did all debugging at the bottom
and often left it there; one put previously-written functions
in a section at the bottom labeled with a “big markdown title”
(IP11). Two participants put function definitions at the top
whereas another used the top to import data. One participant
took care to put all cells that loaded external packages in the
same place, whereas another participant loaded external
packages throughout the notebook.

Another repeated theme about notebook organization was
adding new cells directly to where in the notebook the
original analysis took place (mentioned by 4 participants):

“if I have to iterate a part of it then obviously I tried to
do it close to the place where I inserted it previously, so
either in the cell above or below” - IP09

This created implicit thematic regions of the notebook where
an idea and alternatives to that idea were clustered.

Notebook constraints encourage “expand then reduce”
behavior: 8 of the 21 participants explicitly mentioned that
they tried to organize their notebooks so each code cell
represented a logical unit in the analyses. However, this
structure usually came about after cleanup. Participants
reported a range of 1-70 lines of code in a single cell, but
during active exploration, programmers instead favored
creating many small code cells, often only 1-2 lines of code
at a time, to incrementally test and build up functionality.
This “expand then reduce” pattern was reported by six
participants.

“So at the beginning it's usually a lot of little code cells
that are one at a time... just making things work... I end
up with this huge mess where there are several threads
in sort of the same series. So I usually go back and start
deleting things or combining cells” - IP17

After expanding on an idea, the reduce step is where
participants talked about actively “cleaning up” code cells (6
participants) by deleting those they did not need anymore
and consolidating working cells into one code cell that
represented a logical unit.

Why was the expand step necessary? First, expanding an idea
into many small code cells enabled a programmer to pick and

choose which cells to run, and thus quickly test different
approaches to the same problem. Second, having small code
cells allowed a programmer to view cells of intermediary
output after each code cell, making it easier to view and
reason about their iteration. Third, some participants,
although experts in their own domains, were not expert
programmers. One participant (IP16) referred to the
notebooks as a “crutch”, because as a programming novice
he felt the notebook had much more support for debugging
one line at a time than a standard code editor.

Although generating small code cells was common, it
became impractical to leave them all there for the long term.
Participants complained that many loose code cells made the
notebook a “mess” (a term used by five participants) and
more difficult to understand:

“I’ll clean up as I go because otherwise it would be very
difficult to be remembering all that stuff” – IP5.

The expand-reduce behavior was often talked about in
context of fairly low-level exploration, such as building up a
working function, or figuring out appropriate library calls.
Participants also talked about cleaning up after more
significant explorations. For example 11 of 21 participants
actively “reduced” their experimentation history by deleting
alternatives of an idea from the notebook, or even deleting
entire analyses that ultimately proved less fruitful. Although
it would be less effort by the programmer to leave prior work
in the notebook untouched and only add new work below,
instead, programmers took active effort to continually delete
scratch work from the notebooks. The attention to cleanup
stands in contrast to prior work in non-notebook
environments that has reported that programmers have low-
investment in tidying code during exploratory data science
programming [3,14].

Notebook constraints encourage managing the length of
notebooks: Although a Jupyter notebook does not stop a
programmer from adding unlimited content, for pragmatic
reasons participants reported that the notebook interface does
not work well with long documents. Four participants said
that a long notebook was difficult to manage with scrolling
up and down. Two others said that when code cells were
distantly separated, the code was hard to comprehend.
Because programmers kept different alternative analysis
code in the notebook at the same time, they did not want to
press the “run all” button to execute all code cells. Instead,
participants ran analyses by picking and choosing individual
code cells to run. This sometimes required going to the top
of the notebook to rerun their standard code cells that import
libraries and read in the data, and then scrolling back down
to their current work. Scrolling to the top and down
repeatedly over a long notebook became a burden.

The practical limit of a notebook, one participant (IP16) said,
was about 60 code cells. After the notebook got too long or
too cluttered, participants would either stop and curate the
notebook by deleting alternatives no longer needed or start a

new “fresh” notebook, copying in the most successful parts
of the old notebook to the new one.

“when I open a notebook and I have to scroll for a long
time… I just move on to a new notebook” - IP03

It is unclear if this is a flaw or a benefit of the notebook
design, because the de facto length limit encouraged data
scientists to curate which ideas to retain moving forward.

Reuse, reduce, recycle (code): Almost all participants talked
about reusing code (19). Of those, 11 simply used copy-
paste. Four reported copying code cells within a notebook to
keep code dependencies next to new code. Eight participants
copied code into a different notebook:

“I'll be like, I remember I did this for this project but I
can't remember exactly how to do it. So I'll go find the
project and look at my code and copy paste into the
other one.” - IP05

In addition to copy-paste to reuse functionality, five
participants defined functions and six extracted code into an
external script that could be imported into any notebook. For
instance, IP11 created a new utils.py file for each notebook
he worked with, in order to put reusable functions in a special
place and reduce the size of the notebook. This practice has
been encouraged in some science literature:

“As the code gets longer and more stable, it should be
split out into Python modules to keep the notebook short
and readable.” [28]

However, this routine practice of extracting notebook code
out into a plain Python (or Ruby, Scala, etc.) file for reuse is
akin to “throwing the baby out with the bathwater” in that by
discarding the notebook’s metadata, the data scientists are
also discarding their annotations, graphical output, and
richness of exploration that shows how they derived that
chunk of analysis code.

Narrative Structure of Notebooks
As in literature, the narrative structure of a notebook that tells
the story of the analysis can be linear or non-linear. A pure
linear structure would be akin to paper laboratory notebooks
that keep a complete record of every thought, mistake, dead-
end, and conclusion, in chronological order, often to preserve
dates for patent purposes [29]. A non-linear structure could
present the story of the analysis as a straightforward
progression, recording only important decisions and
rationale rather than the circuitous path that actually
occurred. This would produce a curated document optimized
for comprehensibility over completeness and chronology. A
minority of our participants (4) attempted to keep a linear
structure, e.g.,

“I have a sort of history of the development upstairs in
the notebook.” - IP01

On the other hand, most of our participants produced a
curated document, e.g.,

“I put the right code where it's supposed to be and
delete the other cells, get rid of it to clean up my code.”
- IP09

It is important to note that these two goals were contrasting
situational goals, and not only individual preferences. Two
participants who attempted to create complete records for the
purpose of their research also created curated story
notebooks. They created curated stories when the goal of that
work was to present a specific analysis to an audience, and
created detailed research records when research, not
communication, was their primary goal.

We now turn our attention to how narrative structures
appeared in the notebooks.

Explanation Annotations are Rarely Used in the Exploration
Phase of Work: Only six participants spoke about annotating
their code during the exploration phase of their work. Of
these, three used markdown cells primarily as headers to
separate sections of the code. Using markdown only for
structural organization, rather than explanation woven
throughout the program, is inconsistent with the definition of
literate programming. However, three participants did use
markdown during exploration to record their thoughts as they
went along.

“I just put the [markdown] on some key changing
points of the thought” - IP06

“I'll use markdown cells to put any notes I notice like.
‘OK. Here's a common way that you make a mistake’”
- IP17

One person used code comments (not markdown cells) as

“a way for me to track my process of going along and
to keep thinking through the problem… comments help
me think.” - IP16

In contrast, after the process of exploratory programming
was done, if a participant had a long-term purpose for their
notebook such as sharing it or keeping it for a record, they
would then add more explanatory documentation to the
notebook that is more consistent with literate programming.
Nine participants reported this behavior:

“If it's a notebook that... has to be rerun by me or by
somebody else, I'll try to explain the data sources,
where it comes from... And just the different major steps
in the analysis,” - IP05

“[When] I'm doing research, it's almost like a source
code. And then when I really want to clean it up and
show it to someone else, then I put in annotation.” -
IP10

Mechanisms used to provide narrative structure: The
interweaving of input code and output is a primary
mechanism of narrative structure of any notebook.

“it's nice because all of the images are right there and
all the code is right there.” - IP02

In addition, participants talked about how they used the code
itself to provide narrative structure, through which code cells
they chose to keep and delete.

“if you read my notebook from top to bottom you see
the evolution of my thought. You see that I first do
some... small part of the function, then… the universal
functions… And finally... the conclusions that are
made using the functions.” - IP06

During the dissemination phase, participants used markdown
to create a narrative structure:

“If I'm putting together a script notebook for someone
else to use [I’m] making it nicer and adding markdown
and everything.” - IP03

Sometimes markdown was used to tell a linear story:

“Not only do I just say [in markdown] what I…
removed, but sometimes I show those intermediate steps
so that they can see the progression from raw
uncleaned data to the final product.” - IP08

Other times, markdown was used to curate the story in
concert with deleting less important code to make the key
points of the exploration more apparent:

“I end up with a really messy notebook and I might end
up… opening another one and just doing the clean
version… The stuff that worked. And just with more
comments and just you know nicely formatted.” - IP05

One participant felt that the narrative structure emerged as he
cleaned up his code:

“I usually go back and start deleting things or
combining cells or shifting things around… so the
eventual form with the notebook only gradually
emerges” - IP17

In contrast, participants who used a linear narrative structure
made earlier cells in their notebook historical and immutable
by avoiding overwriting code cells that had already produced
output, and added new code cells only to the bottom of the
notebook. This meant a series of code cells that perform a
data transformation might be duplicated at different locations
in the notebook, enabling the author to keep different output
for each variation and retain a chronological record. This
completeness came at the cost of a hard to read narrative:

“I can't get an overview of what's going on in my
notebook… it's just a lot of stuff and stuff... with all
these random outputs that never get cleaned up.” - IP01

Although these participants achieved a more detailed
record by avoiding curation, it should be noted that they
necessarily curated each time they decided whether to
overwrite and re-run a cell or create a new cell.

Version Control
The vast majority of participants spoke about iterating
extensively on their code (only 2 of 21 said their code

development progressed in a straightforward fashion).
However, all this exploration was generally thrown away.
Participants identified why current means of versioning with
literate programming notebooks is fairly dysfunctional.
Recall that improved version control was the most requested
feature in the Jupyter Project 2015 UX Survey [33].

While 11 of our 21 interview participants did use a version
control tool like Git for their notebooks, the metadata
included in the file format of notebooks currently makes Git
utilities such as diff (viewing the differences between two
source code versions) unusable because utilities were not
designed to treat metadata differently from source code.

“diffing is so hard...I develop until I'm happy and then I'm
going to put it in a file and then I'm going to version
control the file not the notebook.” - IP15

Although a technical annoyance, two participants’
workplaces had scripts to extract the code out of a notebook
and just version that, enabling a normal Git workflow.

Some participants appreciated the conditions under which
formal version control like Git or SVN is important:

“If it's an application, usually there's all sorts of
dependencies. And that's when version control becomes
important. Also if… I have to release this in concert with
something else… then you have to do some sort of version
control” - IP12

Because of the effort involved in using formal versioning
tools, participants often used informal versioning. Consistent
with our prior observations of informal versioning practices
[14], 4 of 21 participants relied on different file names for
version control:

“The stupidest possible version control… you rename the
notebook to something like V0 or V3.” - IP18

This informal method has its own problems:

“...we have like 500 different files all variations of the
same thing and they're all numbered in a way that's
completely useless because I don't remember whether it
was two weeks ago or two months ago I was at this stage
of the iteration.” - IP12

Also consistent with [14], participants used local versioning
inside their notebook. For instance, two participants said they
had code cells containing alternative approaches
simultaneously in view to be able to compare them. However
placing alternative code and output cells directly above or
below the original was a problem due to screen space. With
large code or output cells, authors could not see everything
they needed at once in a single notebook window. Two
participants reported workarounds in order to see alternatives
side by side, for example opening two different windows of
the same notebook to place the windows side by side on their
screen.

STUDY 2
These data and prior work [14] suggest that data scientists
need better versioning tools, but no previous studies have
probed more specific pain points and functional needs for
future tools to address. We conducted a second study to
explore how data scientists think they might want to use a
detailed record of their explorations.

Method
We drew inspiration from the “grounded brainstorming”
procedure described in [1] to design a short computer survey
to elicit data scientists’ versioning needs. The survey first
grounded them in their real experience by asking them to
describe a recent exploratory data analysis they had
performed (Q1). The survey then primed them to think of an
imagined future with a “magical perfect record of every
analysis run you did in this project. You also have a magic
search engine that can retrieve for you any code version,
parameters used or output from the past.” After this
preparation, we asked people to brainstorm by typing “as
many queries as you can think of that could be helpful to you
to retrieve a past experiment. Don't worry about feasibility.”
We asked participants to “phrase [your query] in natural
human language like you're talking to a colleague” both to
discourage the participant from assessing feasibility and to
provide phrases we were likely to understand (Q2). Finally,
we probed for the types of real world problems such future
magic technology might be able to solve: “Has **not**
being able to find a past experiment ever caused you
problems? If yes, what happened?” (Q3).

The survey was conducted at JupyterCon 2017 on a laptop
(27 participants) and online (18 participants), advertised
through posts on the first author’s social media inviting data
scientists to participate.

Analysis
Treating the participants’ answers to Q2 as brainstorming
ideas, we used affinity diagramming to cluster the imagined
queries into different categories (Table 2). We performed a
separate affinity diagramming to cluster participants reported
problems (Q3) into categories.

Results
All survey participants will be referred to as SP01 to SP45.
In Q2, 45 participants generated a total of 125 queries for the
“magic search engine”. Participants’ queries referred to
many kinds of contextual details, including libraries used,
output, plots, data sources, parameters used, running time of
an analysis, time periods, version numbers, and specific
dates (Table 2). Participants did not limit themselves to
imagining only prose queries, e.g., SP13 submitted "Here's
a visualization I produced, let me right click on it to give me
the script to produce it".

In addition, some queries required semantic or conceptual
understanding of the programmer’s task, for instance “Show
me all the different ways I oversampled the minority class”
(SP21), or “What was the state of my notebook the last time

that my plot had a gaussian-ish peak?” (SP17). Some
participants also asked for properties of an analysis relating
to process or rationale, for example: “Find me how I cleaned
the data from start to finish” (SP08) or “What questions did
I ask that didn’t pan out?” (SP12).

Referenced analysis attribute # Queries

Analysis (e.g. “convolutional model”) 46
Output (e.g. “training accuracy”) 25

Time period (e.g. “go back 5 hours”) 17
Dataset (e.g. “previous test result for
this particular dataset”)

15

Plot (e.g. “how did I generate plot 5”) 11

Specific variable 10
Parameters 10

Library 4
Running time of the program (e.g.
“How long did it take to process
country X”)

3

Table 2. Affinity diagramming groups for 125 queries. A
query can appear in multiple groups.

For Q3, 31 of the 41 participants who answered experienced
problems from being unable to find prior analyses versus 10
who had not. The most-mentioned problem was the need to
rewrite code (20 participants). This need had several sources,
including losing the code because that part of the work had
not been saved or losing the rationale behind the code
because it had not been recorded. Without the code that
produced a result, 7 participants no longer trusted that result.
The second most frequently reported problem was time
delays (12 participants) caused by excessive time searching
for code, having to re-run code, or having to rewrite code.
Two participants reported having to consult with a colleague
to solve the problem.

The answers to Q3 validate prior findings [15,29] that past
analyses can be hard and sometimes impossible for data
scientists to find. In notebooks, version control is currently
poor enough that records of prior iterations often do not exist.
Yet even with improved version control, it should be noted
that some ‘magic’ queries from Q2 cannot easily be
translated into traditional text search-engine queries, e.g.
“the last time that my plot had a gaussian-ish peak”.

IMPLICATIONS FOR DESIGN
Solutions for some of the problems uncovered in this
research may already exist in newer UI extensions to the
notebook. For instance, the existing Table of Contents plugin
for notebooks may help with participants’ reported struggles
navigating long notebooks. The recently released tool called
JupyterLab makes collapsing cell sections easier and allows
side-by-side viewing of notebooks, which may obviate
participants’ workarounds for comparing two notebooks.

Our results contain inspiration for other features like the
option to mark a cell so its output is not displayed or to not
be run at all. Below we discuss design implications for
broader thematic changes to notebook tools.

Automated version control
For interview participants who attempted to keep a full
record of their exploration, this often meant that their
notebooks lacked clarity and were full of “stuff” and
“random outputs” (IP01). An automated form of version
control may be a more systematic way of keeping a clear
history of an analysis, while freeing the data scientist to keep
a more concise and clear notebook without needing to keep
old cells on view at all times. Additionally, the diversity of
features and details that participants wanted to retrieve about
their analyses in Q2 of Study 2 suggests that automated
forms of version control, paired with much richer forms of
search, will be needed to match a data scientist’s conceptual
recollection of their work with the artifacts they are looking
for. For instance, in order to answer questions about plots or
visual output in a notebook, the user must be able to search
based on a visual artifact. In order to answer Q2 questions
about parameters and specific variables, a version and search
system must keep some knowledge about the notebook’s
abstract-syntax-tree to track the different values of a variable
from one notebook version to the next. In addition, to answer
Q2 questions particular to a dataset or library such as “which
of my analyses used dataset X?”, some code dependency
information will need to be stored. A tool could collect
variable environment information in an active notebook and
track which lines of code use which resources. Current
version control systems like Git keep plain-text “blobs” of
code and do not store the required structured data about the
code. Inferring and then storing more program-rich metadata
would allow a variety of context-specific version searches as
expressed in Q2, although at the cost of requiring more
metadata storage per notebook and more time-expensive
forms of program analysis. However, such automated
versioning would require no effort for the programmer using
the notebook.

Adding multiple lenses to cell representation
Jupyter Notebooks’ prominent cell structure may visually
encourage logical chunking of code and results in a way that
an unbroken stream of text in a source code file does not.
Indeed, participants described having many small, loose
code cells as “messy”. Although programmers’ inattention to
code structure during exploration is a prevailing theme in
related work [3,14], our participants routinely curated their
exploration, suggesting cell messiness was disruptive
enough to cue some cleanup. This suggests that cell structure
is a valuable UI feature that might be leveraged to address
some of the problems our participants reported.

Logically chunking cells was a mechanism of delivering
narrative in notebooks, yet participants also used cell
structure to support versioning, comparison, and debugging.
We propose a lens [2] interaction approach to notebooks that

would enable addressing the same cell content from a
number of different perspectives. A lens is a UI approach
which provides transparent overlays and transformed ways
of viewing existing content while adding as little as possible
to the existing screen space to avoiding overcomplicating the
existing interface [2]. For instance, before reducing cells to
logical units, participants used small 1 or 2 line code cells for
active iteration as these were far easier to debug. Instead of
this manual expand-reduce behavior, a debugging lens [12]
could explode a cell into individual lines for debugging and
then collapsed back into a cell story unit when the
programmer is satisfied with the code.

For participants who wanted a detailed record, small and
repeated code cells provided versioning detail at the cost of
a messy notebook where the main points were difficult to
pick out. Instead of having to keep all those small iteration
cells around, a notebook could support a historical lens for
cells [2,12]. Similar to how a debugging lens might
“explode” the cell into one-liners, a history lens could
explode the cell into a historical view of how the current
version of the cell was achieved. Instead of copy-pasting
cells to compare and create slight versions of them, this
historical view could provide a local versioning mechanism
within cells, similar to Variolite [14].

When it comes to a historical record, a recurring theme in
literature on scientific lab notebooks is that users need to
interact with bits of content from many different perspectives
[20,29]. For instance, in Oleksik et al.’s study of physicists’
lab notebooks, participants wanted the “ability to pivot on
specific entities or attributes” to generate summaries on-the-
fly that were particularly relevant to their needs at different
points in time [20]. Study 2’s Q2 results support this need for
pivot views. Thus, in a history lens on a notebook cell, a user
should be able to select the item they are curious about, such
as a plot in an output cell. Rather than displaying all versions
of the cell, a history lens could then display only those
versions relevant to the particular pivot selection. Given the
difficulties reported by participants in Q3 of study 2 with
trusting prior results, the origins of a result and related
dependencies must be displayed with enough detail to
support data scientists deciding whether to trust a result.
Tools could support this decision by showing the date, data,
author, and code from which the results came, and alerting
users if that exact data or code was later edited, which may
make these results outdated.

IMPLICATIONS FOR FUTURE STUDIES
Our data analysis has produced accounts of three types of use
cases, a variety of mechanisms for narrative structure and
version control, and several design directions. As mentioned,
these results can be viewed as hypotheses in a longer
research program and future studies should consider using
theoretical sampling in the following three ways.

First, our convenience sampling did not screen for profession
or domain of study, and our data suggest that different
professions do different things. For example, the financial

analysts used Excel for dissemination; the computational
biologist said clients do not have Jupyter; and teachers
shared notebooks, but tended not to create production code.
Future research should sample from different professions,
especially if designers want to produce tools for specific user
groups.

Second, we studied only Jupyter Notebooks and the iteration
behaviors we observed may have been influenced by specific
UI details. For example, managing the size of notebooks may
not be necessary with an environment with an easy cell
hiding capability, as is included in the JuptyerLab tool.
Future studies may want to sample other tools to find which
behaviors generalize.

Finally, perhaps most importantly, the data about
participants’ behaviors was self-reported, not observed, so
future studies should seek to verify these hypotheses through
direct observation e.g., [1] or fine-grained logging that could
confirm behaviors like expand/reduce.

CONCLUSION
Data scientists from a broad range of domains and skill levels
are doing impactful work through code. In this study of
literate programming we found that programmers do create
narrative structure during their exploration, although often
by manipulating cell structure rather than using much
explanatory markdown. Creating a narrative also intersects
and conflicts with other objectives, such as participants who
prototyped and debugged code by expanding-reducing cell
structure, or participants who kept a clutter of old iterations
in their notebooks to retain a history of their work. We hope
our results will inspire future designs for ways to interact
with notebook cells for browsing history, debugging, and
other tasks which may improve the effectiveness of literate
programming for supporting data science.

ACKNOWLEDGEMENTS
We thank our participants and the JupyterCon organizers for
giving us permission and space to run our study. This
research was supported in part by a grant from Bloomberg L.
P. and in part by NSF grant IIS-1314356. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the sponsors.

REFERENCES

1. Hugh Beyer and Karen Holtzblatt. 1997. Contextual
design: defining customer-centered systems. Elsevier.

2. Eric A. Bier, Maureen C. Stone, Ken Pier, William
Buxton, and Tony D. DeRose. 1993. Toolglass and
magic lenses: the see-through interface. In
Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, 73–80.
DOI: https://doi.org/10.1145/166117.166126

3. Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott
R. Klemmer. 2008. Opportunistic programming: How
rapid ideation and prototyping occur in practice. In

Proceedings of the 4th international workshop on
End-user software engineering, 1–5. DOI:
https://doi.org/10.1145/1370847.1370848

4. Juliet Corbin and Anselm Strauss. 1990. Grounded
Theory Research: Procedures, Canons and Evaluative
Criteria. Zeitschrift für Soziologie 19, 6: 515. DOI:
https://doi.org/10.1007/BF00988593

5. The Sage Developers. SageMath, the Sage
Mathematics Software System (Version x.y.z).

6. Danyel Fisher, Badrish Chandramouli, Robert
DeLine, Jonathan Goldstein, Andrei Aron, Mike
Barnett, John C. Platt, James F. Terwilliger, and John
Wernsing. 2014. Tempe: an interactive data science
environment for exploration of temporal and
streaming data. Tech. Rep. MSR-TR-2014--148.

7. Apache Software Foundation. 2017. Apache Zeppelin
0.7.0. Retrieved from https://zeppelin.apache.org/

8. Maik Riechert. 2016. Repairing Bad Pixels. Retrieved
January 6, 2018 from
https://github.com/letmaik/rawpy-
notebooks/blob/master/bad-pixel-repair/bad-pixel-
repair.ipynb

9. Philip Jia Guo. 2012. Software tools to facilitate
research programming. Ph.D. Dissertation. Stanford
University.

10. Philip J. Guo and Margo I. Seltzer. 2012. Burrito:
Wrapping your lab notebook in computational
infrastructure. In Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance.
DOI:

11. Charles Hill, Rachel Bellamy, Thomas Erickson, and
Margaret Burnett. 2016. Trials and tribulations of
developers of intelligent systems: A field study. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2016 IEEE Symposium on, 162–170. DOI:
https://doi.org/10.1109/VLHCC.2016.7739680

12. Scott E. Hudson, Roy Rodenstein, and Ian Smith.
1997. Debugging Lenses: A New Class of Transparent
Tools for User Interface Debugging. In Proceedings
of the 10th Annual ACM Symposium on User Interface
Software and Technology (UIST ’97), 179–187. DOI:
https://doi.org/10.1145/263407.263542

13. Wolfram Research Inc. Mathematica, Version 11.2.
14. Mary Beth Kery, Amber Horvath, and Brad A. Myers.

2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’17), 1265–1276. DOI:
https://doi.org/10.1145/3025453.3025626

15. Clemens Nylandsted Klokmose and Pär-Ola Zander.
2010. Rethinking Laboratory Notebooks. In
Proceedings of COOP 2010. Springer, London, 119–
139. DOI: https://doi.org/10.1007/978-1-84996-211-
7_8

16. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian E. Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick,

Jason Grout, Sylvain Corlay, and Others. 2016.
Jupyter Notebooks-a publishing format for
reproducible computational workflows. In ELPUB,
87–90.

17. Donald Ervin Knuth. 1984. Literate programming.
Computer Journal 27, 2: 97–111. DOI:
http://dx.doi.org/10.1093/comjnl/27.2.97

18. Timothy C. Lethbridge, Janice Singer, and Andrew
Forward. 2003. How software engineers use
documentation: The state of the practice. IEEE
Software 20, 6: 35–39. DOI:
https://doi.org/10.1109/MS.2003.1241364

19. Robert C. Martin. 2009. Clean code: a handbook of
agile software craftsmanship. Pearson Education.

20. Gerard Oleksik, Natasa Milic-Frayling, and Rachel
Jones. 2014. Study of Electronic Lab Notebook
Design and Practices That Emerged in a Collaborative
Scientific Environment. In Proceedings of the 17th
ACM Conference on Computer Supported
Cooperative Work & Social Computing (CSCW ’14),
120–133. DOI:
https://doi.org/10.1145/2531602.2531709

21. David Lorge Parnas. 1994. Software aging. In
Proceedings of the 16th international conference on
Software engineering, 279–287.

22. Kayur Patel. 2010. Lowering the barrier to applying
machine learning. In Adjunct proceedings of the 23nd
annual ACM symposium on User interface software
and technology, 355–358. DOI:
https://doi.org/10.1145/1866218.1866222

23. Kayur Patel, James Fogarty, James A. Landay, and
Beverly Harrison. 2008. Investigating statistical
machine learning as a tool for software development.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 667–676. DOI:
https://doi.org/10.1145/1357054.1357160

24. Fernando Pérez and Brian E. Granger. 2007. IPython:
a System for Interactive Scientific Computing.
Computing in Science and Engineering 9, 3: 21–29.
DOI: https://doi.org/10.1109/MCSE.2007.53

25. Fernando Perez and Brian E. Granger. 2015. Project
Jupyter: Computational Narratives as the Engine of
Collaborative Data Science. Project Jupyter Blog.
Retrieved from
http://blog.jupyter.org/2015/07/07/project-jupyter-

computational-narratives-as-the-engine-of-
collaborative-data-science/

26. Helen Shen. 2014. Interactive notebooks: Sharing the
code. Nature 515, 7525: 151. DOI:
https://doi.org/10.1038/515151a

27. Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal,
Charles Hill, Anita Sarma, David Piorkowski, and
Margaret Burnett. 2016. Foraging Among an
Overabundance of Similar Variants. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16), 3509–3521. DOI:
https://doi.org/10.1145/2858036.2858469

28. Jean-Luc R. Stevens, Marco Elver, and James A.
Bednar. 2013. An automated and reproducible
workflow for running and analyzing neural
simulations using Lancet and IPython Notebook.
Frontiers in neuroinformatics 7. DOI:
https://dx.doi.org/10.3389%2Ffninf.2013.00044

29. Aurélien Tabard, Wendy E. Mackay, and Evelyn
Eastmond. 2008. From Individual to Collaborative:
The Evolution of Prism, a Hybrid Laboratory
Notebook. In Proceedings of the 2008 ACM
Conference on Computer Supported Cooperative
Work (CSCW ’08), 569–578. DOI:
https://doi.org/10.1145/1460563.1460653

30. Greg Wilson. 2006. Software carpentry: getting
scientists to write better code by making them more
productive. Computing in science & engineering 8, 6:
66–69. DOI: https://doi.org/10.1109/MCSE.2006.122

31. Yihui Xie. 2014. knitr: a comprehensive tool for
reproducible research in R. Implement Reprod Res 1:
20.

32. Youngseok Yoon, Brad A. Myers, and Sebon Koo.
2013. Visualization of fine-grained code change
history. In Visual Languages and Human-Centric
Computing (VL/HCC), 2013 IEEE Symposium on,
119–126. DOI:
https://doi.org/10.1109/VLHCC.2013.6645254

33. 12/2015. Jupyter Notebook 2015 UX Survey Results.
Jupyter Project Github Repository. Retrieved from
https://github.com/jupyter/surveys/blob/master/survey
s/2015-12-notebook-
ux/analysis/report_dashboard.ipynb

34. 2013. Databricks. Retrieved from
https://databricks.com/

