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ABSTRACT 
Literate programming tools are used by millions of 
programmers today, and are intended to facilitate presenting 
data analyses in the form of a narrative. We interviewed 21 
data scientists to study coding behaviors in a literate 
programming environment and how data scientists kept track 
of variants they explored. For participants who tried to keep 
a detailed history of their experimentation, both informal and 
formal versioning attempts led to problems, such as reduced 
notebook readability. During iteration, participants actively 
curated their notebooks into narratives, although primarily 
through cell structure rather than markdown explanations. 
Next, we surveyed 45 data scientists and asked them to 
envision how they might use their past history in a future 
version control system. Based on these results, we give 
design guidance for future literate programming tools, such 
as providing history search based on how programmers recall 
their explorations, through contextual details including 
images and parameters. 
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INTRODUCTION 
As more and more people want to make use of the abundance 
of available data, there is a fast growing population of end-
user programmers who are using the power of programming 
to work with data. Analyzing data through code has  long  
been   the    domain    of     end-user programmers, including 
computational scientists, mathematicians,   researchers,  and    
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engineers, many of whom never receive formal training in 
software engineering [30].            

As even more technical novices engage with code and data 
manipulations,  it  is  key  to have end-user programming 
tools that address barriers to doing effective data science. For 
instance, programming with data often requires heavy 
exploration with different ways to manipulate the data 
[14,23]. Currently even experts struggle to keep track of the 
experimentation they do, leading to lost work, confusion 
over how a result was achieved, and difficulties effectively 
ideating [11]. Literate programming has recently arisen as a 
promising direction to address some of these problems [17]. 
It originates from a 1984 paper by Donald Knuth: 

“Time is ripe for significantly better documentation of 
programs, and that we can achieve this best by 
considering programs to be works of literature” [17:1] 

Knuth’s philosophy held that humans should write code 
foremost as a natural language prose expression of their 
reasoning, which a literate programming tool facilitates by 
allowing formatted text annotations to be rendered inline 
with  plain code. The actual computer code would be a 
secondary translation of these essay-like annotations [17]. 
Knuth’s intended audience, mainstream software 
engineering, largely did not adopt the idea. Arguably, literate 
programming is a poor fit to software engineering, as 
documentation quickly gets out of date and is costly to 
maintain [18,21]. Heavy annotations also conflict with the 
idea in software engineering that well-structured code should 
“speak for itself” and be understandable with minimal 
documentation [19].  

Yet in a different community, programming for math and 
sciences, literate programming has thrived since 1988 in 
tools such as Mathematica [13]. For a biologist, physicist or 
financial analyst who codes an analysis, there may be 
theories and equations embodied in their source code which 
could benefit from additional explanation as formatted 
equations or images [31]. By allowing the mix of any media 
needed to understand domain-rich code, literate 
programming has gained an important role in the sharing and 
reproducibility of computational analyses [31][16]. Today, 
open source literate programming tools like Jupyter 
notebooks [24] and knitr [31] have become hugely popular, 



 

 

with millions of users across a wide range of expertise and 
subject domains. 

Although literate programming currently aids a programmer 
to communicate an analysis [26] data science tasks are 
known to be highly iterative and exploratory [9]. For every 
useful model feature or insightful visualization data 
scientists create, there may be many less-successful features, 
plots, or analyses they have tried. In order for the original 
programmer or another person to improve and build upon 
their work, knowledge of this exploration is important.  Data 
scientists need to keep track of what they have attempted, 
including failed approaches, to justify why they choose 
certain approaches over others and to be more effective in 
their ideation [11]. Current approaches, including traditional 
version control, have been found to be ineffective or require 
high amounts of tedious manual note taking on part of the 
data scientist [14]. With the increased ability to keep code, 
data, input, and output together in one document, we 
wondered if literate programming helps data scientists retain 
the story of their in-progress exploration. Some in the 
scientific computing literature say yes. An article in Nature 
says that a literate programming tool like Jupyter notebooks 
“helps researchers to keep a detailed lab notebook for their 
computational work” [26]. However, although literate 
programming is an essential and distinct kind of 
programming in data computing today, there have been no 
studies on how literate programming affects data scientists. 
In this paper we present two studies that investigate how data 
scientists explore ideas as they develop code, and how and 
why they develop a narrative structure in a literate 
programming tool. 

In our first study, we interviewed 21 professional data 
scientists who use Jupyter notebooks, a popular literate 
programming tool in data science with over 2 million users 
as of 2015 [25]. We found that although notebooks are 
limited in how they can be used to keep a detailed record of 
all explorations, several patterns of curatorial behavior 
emerged during iteration to build narrative. 

In a second study, we probed how future tools may improve 
data scientists’ interactions with exploration history. We 
surveyed 45 data scientists and asked how they might use 
historical records of their analyses if they had a magical 
oracle to deliver any prior analyses content to them. These 
results revealed highly varied ways of interacting with 
history. Finally, we discuss implications for future research.   

BACKGROUND & RELATED WORK 

Data Science &  Exploratory Programming 
How do data scientists get to the final computational 
analyses? Guo [6] described the process for obtaining 
insights from data as having four phases: preparation, where 
data is acquired and cleaned, an iterative cycle of analysis, 
where code is written, inspected, and debugged, and 
reflection to interpret the outputs and suggest alternatives, 
and dissemination of the results in the form of written 

reports, raw results such as plots, or shared scripts [6]. We 
consider the iterations in the first three of these phases to be 
"exploration" [12], in which the programmer’s goals for their 
program evolve by writing and testing code instantiations of 
different ideas. Some recent work has looked at exploratory 
programming for data science work [10,14,22], however not 
in the context of literate programming. Prior exploratory 
programming work has found that programmers 
conceptualize a narrative as they try to understand someone 
else’s code [27], but that programmers create rather 
haphazard  adhoc code during their own exploration [3,14]. 

Notebook programming environments 
A “notebook” environment is one particular genre of literate 
programming tools that is supported by many data-centric 
literate programming tools such as Jupyter Notebooks,  
Mathematica [13], Databricks [34], Apache Zeppelin [7],  
and Sage Notebooks [5]. Although here we specifically study 
Jupyter Notebooks, we report on the usage of core features 
like cell structure, cell layout, and cell types, which are 
common features to this entire genre of tools and should 
allow our findings to generalize more broadly. 

A notebook environment supports chunks of content, called 
“cells.” A cell can contain code, output, a table, a plot, 
formatted “Markdown” text, or other kinds of media. For 
example, the first cell in Figure 1 contains formatted 
Markdown text (indicated by no background color and no 
number in the left margin), the second cell contains python 
code (labeled In [4]:), and the third contains the graphical 
output of that code (labeled Out [4]:), which is updated 
each time the code in that cell is run.  

Figure 1. Excerpt from a Jupyter notebook [8] 

With a notebook, a programmer can produce a literate 
program that fits Knuth’s ideal definition: a chronological 
progression of Markdown cells, code cells, and output cells, 
explaining everything from top to bottom. However, the 
notebook environment does not enforce this structure. A 
programmer is not forced to add Markdown explanations or 
any code comments. A notebook also allows each code cell 
to be edited and run individually at any time in any order, so 



 

 

rather than running the entire file from top to bottom, or only 
editing at the end of the notebook, programmers can pick and 
choose which code cells they would like to edit and run. As 
notebooks do not actually enforce a literate style, the 
programmers’ situational needs are likely what motivates 
them to create a coherent literary-style document or not. 

Literate programming tool developers ask their users for 
feedback. For example, in 2015, the Jupyter Project surveyed 
over 1000 users, on general usage, pain points, and feature 
requests [33]. They reported a quantitative analysis of all 
data, including keyword frequency counts on free-text 
responses. Version control was the most highly requested 
feature, although what the respondents meant by “version 
control” and what pain points it was intended to resolve was 
not probed. In addition to these data, there are many public 
examples of Jupyter notebooks online (for instance, a simple 
search on GitHub yields over 89,000 notebooks). However 
the artifacts themselves do not provide enough detail about 
small-grained iterations and intention [32] to answer our 
research questions,  requiring us to use different methods to 
understand how data scientists explore ideas. 

Lab notebooks and scientific documentation 
Lab notebooks are a log of scientific activity that contain 
enough detail for a scientist to later reproduce their 
experiments [15]. Lab notebooks are ideally immutable logs 
once written, in order to serve as legal evidence of discovery 
in patent cases or questions of scientific validity [15]. Lab 
notebooks take the form of paper, digital note-taking tools, 
and hybrids between paper and digital notes [29]. Prior 
studies have explored the design needs that scientists have 
for their lab notebooks and their struggles with searching and 
maintaining scientific records [15,20,29]. Notebook 
programming, like any digital tool that can record text, can 
be used as a lab notebook [26] but can also serve many other 
purposes. Prior studies have largely focused on wet-lab 
scientists, whereas a chief difference in our current 
behavioral study is our sample of computational analysts 
who primarily work through code. Thus our investigation is 
not just on the record keeping, but on the iteration of their 
primary work through code. 

STUDY 1  

Method 
To get as unbiased a view as possible of data scientists 
working with a literate programming environment, we 
followed the Grounded Theory Method (GTM) described by 
Corbin and Strauss [4] for data collection and analysis. We 
had the opportunity to collect data at the inaugural 
conference for Jupyter Notebook users (JupyterCon 2017). 
This provided  a concentrated sample of people who have 
experience using Jupyter notebooks for real-world 
professional data analysis programming. Participants were 
recruited through conference speakers announcing the 
activity and organizers tweeting about it.  

We interviewed 25 participants, but 4 were removed from 
our analysis because these interviewees turned out to be 
managers or otherwise did not personally do data analysis in 
notebooks. The final 21 interviewees held job titles shown in 
Table 1 and reported gender identity of 19 men, and 2 
women. Interviews lasted 10 to 30 minutes, based on the 
participant’s availability.  

Role Participant 
College teacher & researcher IP01, IP02, IP10, IP15, IP17 
Financial analyst IP05, IP06 
Computational Biologist IP08 
Software Developer IP19 
Data visualization designer IP03, IP04, IP21 

Data Scientist IP07, IP09, IP11, IP12, 
IP13, IP14, IP16, IP18, IP20 

Table 1. Interview participants’ primary job roles 

The interviews were planned around a few open-ended 
questions, beginning with an overview: “Please tell me 
briefly what you use Jupyter notebooks for?”. The next probe 
asked for details of what the interviewees did in notebooks 
to develop their ideas from inception to final result (over 
60% of the interviewer’s utterances were on this topic). If  
participants had their laptop with them, they were invited to 
show the interviewer their actual notebook documents, and 
four of the participants did. Our other planned questions 
involved sharing with other people, the use of markdown 
cells and code comments, the size of code cells and 
notebooks, and version control. Specific questions were 
generated on the fly in response to interviewees’ answers e.g. 
“You mentioned that you've used version control, and you've 
also used a sort of numbering scheme. Is there any reason 
why you do one or the other?” Due to time constraints and 
which topics a participant expressed the most details on, not 
all interviews touched on all topics.  

Analysis 
After transcribing the 21 interviews, the first author did a 
line-by-line open coding on a random sample of six 
transcripts and produced a coding guide. The open coding 
evolved through this process. For example, codes for 
prototyping, experimenting, testing, and iterating were 
abstracted into Testing Ideas. Following the advice in [4] 
about avoiding bias through allowing scrutiny of the analysis 
by others, we used inter-rater reliability as an indication that 
these codes were meaningfully defined. The fourth author 
used the guide to code one of the transcripts, disagreements 
were discussed and the definitions improved. Both authors 
coded another transcript with the new guide and attained a 
Cohen’s Kappa of 0.82. The fourth author then coded all 
transcripts using the new guide. Codes continued to evolve, 
primarily in sub-topics, e.g., Annotating became Annotating 
with Markdown and  Annotating with Code Comments. 



 

 

Limitations of the Data Collection and Analysis Method 
Interviewing attendees at JupyterCon2017 is an example of 
“convenience sampling”, as target participants were 
congregating at a single place, for a short period of time, and 
we could obtain permission and physical space from the 
conference organizers. Interviewing was a condensed and 
intense activity, with no time in between interviews in which 
to interweave analysis as is normal in GTM. Therefore, this 
study should be considered the first step in a research 
program and we provide recommendations for theoretical 
sampling at the end of the paper. Although four participants 
showed us examples of their work, subsequent data 
collection should consider doing field-based contextual 
inquiry [1] to better ground the data in observable behavior. 

Results and Discussion 
Interview participants will be referred to as IP01 to IP21 (see 
Table 1). First we discuss participants’ use cases in the 
notebook environment, and then their iteration behaviors. 

Use Cases 
Our data revealed three use cases for notebooks: (1) 
preliminary “scratch pad” work, (2) work that ends up 
extracted out of the notebook for use in a production pipeline, 
and (3) work intended to be shared in different ways. These 
use cases are not disjoint. Pieces of code from a scratch pad 
can be extracted out into a script for use in a production 
pipeline. Code extracted for production is sometimes also 
shared with others via a detailed literate notebook complete 
with graphics and Markdown explanations. 

Scratch Pad Use Case: Almost half our participants (10) 
used notebooks as scratch pads; 6 explicitly used that term. 
By this they meant they wrote  code cells that they expected 
to be preliminary and short-lived. Scratch pads were used to 
answer a specific question, such as how to debug a piece of 
code, test out example code from the internet, or test if an 
analysis idea was worth pursuing further.  

”I was just testing to make sure I had the syntax right 
on these tuples.” - IP13 

“OK so can we do k-means on this dataset and like does 
it make sense” - IP11 

Scratchpad use appeared on two levels. “Scratch cells” were 
used within a notebook during exploration.    

”only the last [cell] you did is actually useful so you get 
rid of some of this sort of trial and error-y things” - 
IP18 

At a higher level, some participants had whole notebooks 
that they used only for scratch work.  

“In fact, I have a whole scratch directory where I just 
run a Jupyter server there and make a notebook, do 
something real quick and that’s easier than just about 
anything else.” - IP17 

Since scratchpad work was intended to be short-lived, 
participants did not spend time annotating it. However, when 

the results of scratchwork were successful, that code was 
extracted out to a permanent place or transitioned from a 
scratchpad to a substantial literate document. 

Production Pipeline Use Case: Seven participants reported 
that finished code was incorporated into a bigger code base. 
Finished code had to be extracted out of the notebook and 
placed in a plain-text code file when it was needed in a larger 
production pipeline because the extra metadata in a notebook 
file made it unusable by automated processes.  

Sharing Use Case: Almost all our participants (20 of 21) 
shared the results of the analysis in a notebook, or the 
notebook itself, with someone else. These notebooks were 
typically significant explorations, included developing a 
model, conducting computational research, or creating a 
comprehensive analysis. Participants iterated on these 
analyses over the span of days to months, and generally took 
care in adding structure to these notebooks, as we will 
discuss later. Five participants were teachers who gave 
notebooks to their students for structured assignments:  

“We do all of our teaching through notebooks. This 
includes lectures... in notebooks... then we give them 
projects to work on... in the form of notebooks.” - IP17 

Two other participants shared  notebooks with clients: 

“not only for the actual data exploration myself but 
then to communicate the results of that effectively back 
to the person that asked me to do the work.” - IP08 

Twelve shared with collaborators or teammates: 

“I think the reason I use Jupyter is because it actually 
allows me to share the process by which I arrive at 
results with people who I want to convince of 
something, both so that they can spot any errors I may 
have made and also that they can use similar techniques 
in their own work.” - IP18 

Two others referred to sharing with their future selves: 

“And the idea is to comment them enough… [if you] 
came back next year would you understand exactly 
what the notebook was supposed to be doing.”- IP13 

If any sharing was anticipated, including with a future self, 
participants reported putting extra care into making sure the 
notebook was clear to read. 

Although notebooks themselves were shared, especially by 
teachers, many other formats for sharing were mentioned. 
For example, both financial analysts said they shared results 
in Excel. Other participants mentioned JPGs, HTML, PDFs, 
and slides. Today, this is often a necessity: 

“most of my clients don't have Jupyter installed on their 
machines so I can't just give them a notebook file.”- 
IP08 



 

 

On the other hand, five participants were enthusiastic about 
sharing interactive widgets which can be added as extensions 
to a cell to allow a reader to tune variables: 

“Being able to have them… play with things will be a 
huge step forward… that would definitely have to be a 
centrally hosted kind of thing, because we're not going 
to expect anyone to download Jupyter”- IP08 

Iteration Behaviors  
Organizing the notebook while iterating: Participants 
reported different strategies for organizing their notebooks 
while iterating on the code. For example, the bottom of the 
notebook was used in idiosyncratic ways: two participants 
reported coding top-to-bottom so the most recent code was 
always at the bottom; one did all debugging at the bottom 
and often left it there; one put previously-written functions 
in a section at the bottom labeled with a “big markdown title” 
(IP11). Two participants put function definitions at the top 
whereas another used the top to import data. One participant 
took care to put all cells that loaded external packages in the 
same place, whereas another participant loaded external 
packages throughout the notebook.  

Another repeated theme about notebook organization was 
adding new cells directly to where in the notebook the 
original analysis took place (mentioned by 4 participants):  

“if I have to iterate a part of it then obviously I tried to 
do it close to the place where I inserted it previously, so 
either in the cell above or below” - IP09 

This created implicit thematic regions of the notebook where 
an idea and alternatives to that idea were clustered. 

Notebook constraints encourage “expand then reduce” 
behavior:  8 of the 21 participants explicitly mentioned that 
they tried to organize their notebooks so each code cell 
represented a logical unit in the analyses. However, this 
structure usually came about after cleanup. Participants 
reported a range of 1-70 lines of code in a single cell, but 
during active exploration, programmers instead favored 
creating many small code cells, often only 1-2 lines of code 
at a time, to incrementally test and build up functionality. 
This “expand then reduce” pattern was reported by six 
participants.  

“So at the beginning it's usually a lot of little code cells 
that are one at a time... just making things work... I end 
up with this huge mess where there are several threads 
in sort of the same series. So I usually go back and start 
deleting things or combining cells” - IP17 

After expanding on an idea, the reduce step is where 
participants talked about actively “cleaning up” code cells (6 
participants) by deleting those they did not need anymore 
and consolidating working cells into one code cell that 
represented a logical unit. 

Why was the expand step necessary? First, expanding an idea 
into many small code cells enabled a programmer to pick and 

choose which cells to run, and thus quickly test different 
approaches to the same problem. Second, having small code 
cells allowed a programmer to view cells of intermediary 
output  after each code cell, making it easier to view and 
reason about their iteration. Third, some participants, 
although experts in their own domains, were not expert 
programmers. One participant (IP16) referred to the 
notebooks as a “crutch”, because as a programming novice 
he felt the notebook had much more support for debugging 
one line at a time than a standard code editor. 

Although generating small code cells was common, it 
became impractical to leave them all there for the long term. 
Participants complained that many loose code cells made the 
notebook a “mess” (a term used by five participants) and 
more difficult to understand: 

“I’ll clean up as I go because otherwise it would be very 
difficult to be remembering all that stuff” – IP5. 

The expand-reduce behavior was often talked about in 
context of fairly low-level exploration, such as building up a 
working function, or figuring out appropriate library calls. 
Participants also talked about cleaning up after more 
significant explorations. For example 11 of 21 participants 
actively “reduced” their experimentation history by deleting 
alternatives of an idea from the notebook, or even deleting 
entire analyses that ultimately proved less fruitful. Although 
it would be less effort by the programmer to leave prior work 
in the notebook untouched and only add new work below, 
instead, programmers took active effort to continually delete 
scratch work from the notebooks. The attention to cleanup 
stands in contrast to prior work in non-notebook 
environments that has reported that programmers have low-
investment in tidying code during exploratory data science 
programming [3,14]. 

Notebook constraints encourage managing the length of  
notebooks:  Although a Jupyter notebook does not stop a 
programmer from adding unlimited content, for pragmatic 
reasons participants reported that the notebook interface does 
not work well with long documents. Four participants said 
that a long notebook was difficult to manage with scrolling 
up and down. Two others said that when code cells were 
distantly separated, the code was hard to comprehend. 
Because programmers kept different alternative analysis 
code in the notebook at the same time, they did not want to 
press the “run all” button to execute all code cells. Instead, 
participants ran analyses by picking and choosing individual 
code cells to run. This sometimes required going to the top 
of the notebook to rerun their standard code cells that import 
libraries and read in the data, and then scrolling back down 
to their current work. Scrolling to the top and down 
repeatedly over a long notebook became a burden.  

The practical limit of a notebook, one participant (IP16) said, 
was about 60 code cells. After the notebook got too long or 
too cluttered, participants would either stop and curate the 
notebook by deleting alternatives no longer needed or start a 



 

 

new “fresh” notebook, copying in the most successful parts 
of the old notebook to the new one. 

“when I open a notebook and I have to scroll for a long 
time… I just move on to a new notebook” - IP03 

It is unclear if this is a flaw or a benefit of the notebook 
design, because the de facto length limit encouraged data 
scientists to curate which ideas to retain moving forward.  

Reuse, reduce, recycle (code): Almost all participants talked 
about reusing code (19). Of those, 11 simply used copy-
paste. Four reported copying code cells within a notebook to 
keep code dependencies next to new code. Eight participants 
copied code into  a different notebook: 

“I'll be like, I remember I did this for this project but I 
can't remember exactly how to do it. So I'll go find the 
project and look at my code and copy paste into the 
other one.” - IP05 

In addition to copy-paste to reuse functionality, five 
participants defined functions and six extracted code into an 
external script that could be imported into any notebook. For 
instance, IP11 created a new utils.py file for each notebook 
he worked with, in order to put reusable functions in a special 
place and reduce the size of the notebook. This practice has 
been encouraged in some science literature:   

“As the code gets longer and more stable, it should be 
split out into Python modules to keep the notebook short 
and readable.” [28] 

However, this routine practice of extracting notebook code 
out into a plain Python (or Ruby, Scala, etc.) file for reuse is 
akin to “throwing the baby out with the bathwater” in that by 
discarding the notebook’s metadata, the data scientists are 
also discarding their annotations, graphical output, and 
richness of exploration that shows how they derived that 
chunk of analysis code.  

Narrative Structure  of Notebooks 
As in literature, the narrative structure of a notebook that tells 
the story of the analysis can be linear or non-linear. A pure 
linear structure would be akin to paper laboratory notebooks 
that keep a complete record of every thought, mistake, dead-
end, and conclusion, in chronological order, often to preserve 
dates for patent purposes [29]. A non-linear structure could 
present the story of the analysis as a straightforward 
progression, recording only important decisions and 
rationale rather than the circuitous path that actually 
occurred. This would produce a curated document optimized 
for comprehensibility over completeness and chronology. A 
minority of our participants (4) attempted to keep a linear 
structure, e.g.,  

“I have a sort of history of the development upstairs in 
the notebook.” - IP01 

On the other hand, most of our participants produced a 
curated document, e.g.,  

“I put the right code where it's supposed to be and 
delete the other cells, get rid of it to clean up my code.” 
- IP09 

It is important to note that these two goals were contrasting 
situational goals, and not only individual preferences. Two 
participants who attempted to create complete records for the 
purpose of their research also created curated story 
notebooks. They created curated stories when the goal of that 
work was to present a specific analysis to an audience, and 
created detailed research records when research, not 
communication, was their primary goal.  

We now turn our attention to how narrative structures 
appeared in the notebooks. 

Explanation Annotations are Rarely Used in the Exploration 
Phase of Work:  Only six participants spoke about annotating 
their code during the exploration phase of their work. Of 
these, three used markdown cells primarily as headers to 
separate sections of the code. Using markdown only for 
structural organization, rather than explanation woven 
throughout the program, is inconsistent with the definition of 
literate programming. However, three participants did use 
markdown during exploration to record their thoughts as they 
went along. 

“I just put the [markdown] on some key changing 
points of the thought” - IP06 

“I'll use markdown cells to put any notes I notice like. 
‘OK. Here's a common way that you make a mistake’” 
- IP17  

One person used code comments (not markdown cells) as  

“a way for me to track my process of going along and 
to keep thinking through the problem… comments help 
me think.” - IP16 

In contrast, after the process of exploratory programming 
was done, if a participant had a long-term purpose for their 
notebook such as sharing it or keeping it for a record, they 
would then add more explanatory documentation to the 
notebook that is more consistent with literate programming. 
Nine participants reported this behavior: 

“If it's a notebook that... has to be rerun by me or by 
somebody else, I'll try to explain the data sources, 
where it comes from... And just the different major steps 
in the analysis,” - IP05 

“[When] I'm doing research, it's almost like a source 
code. And then when I really want to clean it up and 
show it to someone else, then I put in annotation.” - 
IP10 

Mechanisms used to provide narrative structure: The 
interweaving of input code and output is a primary 
mechanism of narrative structure of any notebook. 

“it's nice because all of the images are right there and 
all the code is right there.” - IP02 



 

 

In addition, participants talked about how they used the code 
itself to provide narrative structure, through which code cells 
they chose to keep and delete.  

“if you read my notebook from top to bottom you see 
the evolution of my thought. You see that I first do 
some... small part of the function, then… the universal 
functions… And finally... the conclusions that are 
made using the functions.” - IP06 

During the dissemination phase, participants used markdown 
to create a narrative structure: 

“If I'm putting together a script notebook for someone 
else to use [I’m] making it nicer and adding markdown 
and everything.” - IP03 

Sometimes markdown was used to tell a linear story: 

“Not only do I just say [in markdown] what I… 
removed, but sometimes I show those intermediate steps 
so that they can see the progression from raw 
uncleaned data to the final product.” - IP08 

Other times, markdown was used to curate the story in 
concert with deleting less important code to make the key 
points of the exploration more apparent: 

“I end up with a really messy notebook and I might end 
up… opening another one and just doing the clean 
version… The stuff that worked. And just with more 
comments and just you know nicely formatted.” - IP05 

One participant felt that the narrative structure emerged as he 
cleaned up his code: 

“I usually go back and start deleting things or 
combining cells or shifting things around… so the 
eventual form with the notebook only gradually 
emerges” - IP17 

In contrast, participants who used a linear narrative structure  
made earlier cells in their notebook historical and immutable 
by avoiding overwriting code cells that had already produced 
output, and added new code cells only to the bottom of the 
notebook. This meant a series of code cells that perform a 
data transformation might be duplicated at different locations 
in the notebook, enabling the author to keep different output 
for each variation and retain a chronological record. This 
completeness came at the cost of a hard to read narrative: 

“I can't get an overview of what's going on in my 
notebook… it's just a lot of stuff and stuff... with all 
these random outputs that never get cleaned up.” - IP01 

Although these participants achieved a more detailed 
record by avoiding curation, it should be noted that they 
necessarily curated each time they decided whether to 
overwrite and re-run a cell or create a new cell. 

Version Control  
The vast majority of participants spoke about iterating 
extensively on their code (only 2 of 21 said their code 

development progressed in a straightforward fashion). 
However, all this exploration was generally thrown away. 
Participants identified why current means of versioning with 
literate programming notebooks is fairly dysfunctional. 
Recall that improved version control was the most requested 
feature in the Jupyter Project 2015 UX Survey [33].  

While 11 of our 21 interview participants did use a version 
control tool like Git for their notebooks, the metadata 
included in the file format of notebooks currently makes Git 
utilities such as diff (viewing the differences between two 
source code versions) unusable because utilities were not 
designed to treat metadata differently from source code. 

“diffing is so hard...I develop until I'm happy and then I'm 
going to put it in a file and then I'm going to version 
control the file not the notebook.” - IP15 

Although a technical annoyance, two participants’ 
workplaces had scripts to extract the code out of a notebook 
and just version that, enabling a normal Git workflow.  

Some participants appreciated the conditions under which 
formal version control like Git or SVN is important: 

“If it's an application, usually there's all sorts of 
dependencies. And that's when version control becomes 
important. Also if… I have to release this in concert with 
something else… then you have to do some sort of version 
control” - IP12 

Because of the effort involved in using formal versioning 
tools, participants often used informal versioning. Consistent 
with our prior observations of informal versioning practices 
[14], 4 of 21 participants relied on different file names for 
version control: 

“The stupidest possible version control… you rename the 
notebook to something like V0 or V3.” - IP18 

This informal method has its own problems: 

“...we have like 500 different files all variations of the 
same thing and they're all numbered in a way that's 
completely useless because I don't remember whether it 
was two weeks ago or two months ago I was at this stage 
of the iteration.” - IP12 

Also consistent with [14], participants used local versioning 
inside their notebook. For instance, two participants said they 
had code cells containing alternative approaches 
simultaneously in view to be able to compare them. However 
placing alternative code and output cells directly above or 
below the original was a problem due to screen space. With 
large code or output cells, authors could not see everything 
they needed at once in a single notebook window. Two 
participants reported workarounds in order to see alternatives 
side by side, for example opening two different windows of 
the same notebook to place the windows side by side on their 
screen. 



 

 

STUDY 2 
These data and prior work [14] suggest that data scientists 
need better versioning tools, but no previous studies have 
probed more specific pain points and functional needs for 
future tools to address. We conducted a second study to 
explore how data scientists think they might want to use a 
detailed record of their explorations. 

Method  
We drew inspiration from the “grounded brainstorming” 
procedure described in [1] to design a short computer survey 
to elicit data scientists’ versioning needs. The survey first 
grounded them in their real experience by asking them to 
describe a recent exploratory data analysis they had 
performed (Q1). The survey then primed them to think of an 
imagined future with a “magical perfect record of every 
analysis run you did in this project. You also have a magic 
search engine that can retrieve for you any code version, 
parameters used or output from the past.” After this 
preparation, we asked people to brainstorm by typing “as 
many queries as you can think of that could be helpful to you 
to retrieve a past experiment. Don't worry about feasibility.” 
We asked participants to “phrase [your query] in natural 
human language like you're talking to a colleague” both to 
discourage the participant from assessing feasibility and to 
provide phrases we were likely to understand (Q2). Finally, 
we probed for the types of real world problems such future 
magic technology might be able to solve: “Has **not** 
being able to find a past experiment ever caused you 
problems? If yes, what happened?” (Q3). 

The survey was conducted at JupyterCon 2017 on a laptop 
(27 participants) and online (18 participants), advertised 
through posts on the first author’s social media inviting data 
scientists to participate.  

Analysis 
Treating the participants’ answers to Q2 as brainstorming 
ideas, we used affinity diagramming to cluster the imagined 
queries into different categories (Table 2). We performed a 
separate affinity diagramming to cluster participants reported 
problems (Q3) into categories. 

Results  
All survey participants will be referred to as SP01 to SP45. 
In Q2, 45 participants generated a total of 125 queries for the 
“magic search engine”. Participants’ queries referred to 
many kinds of contextual details, including libraries used, 
output, plots, data sources, parameters used, running time of 
an analysis, time periods, version numbers, and specific 
dates (Table 2). Participants did not limit themselves to 
imagining only prose queries, e.g., SP13 submitted "Here's 
a visualization I produced, let me right click on it to give me 
the script to produce it". 

In addition, some queries required semantic or conceptual 
understanding of the programmer’s task, for instance “Show 
me all the different ways I oversampled the minority class” 
(SP21), or “What was the state of my notebook the last time 

that my plot had a gaussian-ish peak?” (SP17). Some 
participants also asked for properties of an analysis relating 
to process or rationale, for example: “Find me how I cleaned 
the data from start to finish” (SP08) or “What questions did 
I ask that didn’t pan out?” (SP12).  

Referenced analysis attribute # Queries 

Analysis (e.g. “convolutional model”) 46 
Output (e.g. “training accuracy”) 25 

Time period  (e.g. “go back 5 hours”) 17 
Dataset (e.g. “previous test result for 
this particular dataset”) 

15 

Plot (e.g. “how did I generate plot 5”) 11 

Specific variable 10 
Parameters 10 

Library 4 
Running time of the program (e.g. 
“How long did it take to process 
country X”) 

3 

Table 2. Affinity diagramming groups for 125 queries. A 
query can appear in multiple groups. 

For Q3, 31 of the 41 participants who answered experienced 
problems from being unable to find prior analyses versus 10 
who had not. The most-mentioned problem was the need to 
rewrite code (20 participants). This need had several sources, 
including losing the code because that part of the work had 
not been saved or losing the rationale behind the code 
because it had not been recorded. Without the code that 
produced a result, 7 participants no longer trusted that result. 
The second most frequently reported problem was time 
delays (12 participants) caused by excessive time searching 
for code, having to re-run code, or having to rewrite code. 
Two participants reported having to consult with a colleague 
to solve the problem.  

The answers to Q3 validate prior findings [15,29] that past 
analyses can be hard and sometimes impossible for data 
scientists to find. In notebooks, version control is currently 
poor enough that records of prior iterations often do not exist. 
Yet even with improved version control, it should be noted 
that some ‘magic’ queries from Q2 cannot easily be 
translated into traditional text search-engine queries, e.g. 
“the last time that my plot had a gaussian-ish peak”.  

IMPLICATIONS FOR DESIGN 
Solutions for some of the problems uncovered in this 
research may already exist in newer UI extensions to the 
notebook. For instance, the existing Table of Contents plugin 
for notebooks may help with participants’ reported struggles 
navigating long notebooks. The recently released tool called 
JupyterLab makes collapsing cell sections easier and allows 
side-by-side viewing of notebooks, which may obviate 
participants’ workarounds for comparing two notebooks. 



 

 

Our results contain inspiration for other features like the 
option to mark a cell so its output is not displayed or to not 
be run at all. Below we discuss design implications for 
broader thematic changes to notebook tools. 

Automated version control 
For interview participants who attempted to keep a full 
record of their exploration, this often meant that their 
notebooks lacked clarity and were full of “stuff” and 
“random outputs” (IP01). An automated form of version 
control may be a more systematic way of keeping a clear 
history of an analysis, while freeing the data scientist to keep 
a more concise and clear notebook without needing to keep 
old cells on view at all times. Additionally, the diversity of 
features and details that participants wanted to retrieve about 
their analyses in Q2 of Study 2 suggests that automated 
forms of version control, paired with much richer forms of 
search, will be needed to match a data scientist’s conceptual 
recollection of their work with the artifacts they are looking 
for. For instance, in order to answer questions about plots or 
visual output in a notebook, the user must be able to search 
based on a visual artifact. In order to answer Q2 questions 
about parameters and specific variables, a version and search 
system must keep some knowledge about the notebook’s 
abstract-syntax-tree to track the different values of a variable 
from one notebook version to the next. In addition, to answer 
Q2 questions particular to a dataset or library such as “which 
of my analyses used dataset X?”, some code dependency 
information will need to be stored. A tool could collect 
variable environment information in an active notebook and 
track which lines of code use which resources. Current 
version control systems like Git keep plain-text “blobs” of 
code and do not store the required structured data about the 
code. Inferring and then storing more program-rich metadata 
would allow a variety of context-specific version searches as 
expressed in Q2, although at the cost of requiring more 
metadata storage per notebook and more time-expensive 
forms of program analysis. However, such automated 
versioning would require no effort for the programmer using 
the notebook. 

Adding multiple lenses to cell representation  
Jupyter Notebooks’ prominent cell structure may visually 
encourage logical chunking of code and results in a way that 
an unbroken stream of text in a source code file does not. 
Indeed, participants described having many small, loose 
code cells as “messy”. Although programmers’ inattention to 
code structure during exploration is a prevailing theme in 
related work [3,14], our participants routinely curated their 
exploration, suggesting cell messiness was disruptive 
enough to cue some cleanup. This suggests that cell structure 
is a valuable UI feature that might be leveraged to address 
some of the problems our participants reported. 

Logically chunking cells was a mechanism of delivering 
narrative in notebooks, yet participants also used cell 
structure to support versioning, comparison, and debugging. 
We propose a lens [2] interaction approach to notebooks that 

would enable addressing the same cell content from a 
number of different perspectives. A lens is a UI approach 
which provides transparent overlays and transformed ways 
of viewing existing content while adding as little as possible 
to the existing screen space to avoiding overcomplicating the 
existing interface [2]. For instance, before reducing cells to 
logical units, participants used small 1 or 2 line code cells for 
active iteration as these were far easier to debug. Instead of 
this manual expand-reduce behavior, a debugging lens [12] 
could explode a cell into individual lines for debugging and 
then collapsed back into a cell story unit when the 
programmer is satisfied with the code.  

For participants who wanted a detailed record, small and 
repeated code cells provided versioning detail at the cost of 
a messy notebook where the main points were difficult to 
pick out. Instead of having to keep all those small iteration 
cells around, a notebook could support a historical lens for 
cells [2,12]. Similar to how a debugging lens might 
“explode” the cell into one-liners, a history lens could 
explode the cell into a historical view of how the current 
version of the cell was achieved. Instead of copy-pasting 
cells to compare and create slight versions of them, this 
historical view could provide a local versioning mechanism 
within cells, similar to Variolite [14]. 

When it comes to a historical record, a recurring theme in 
literature on scientific lab notebooks is that users need to 
interact with bits of content from many different perspectives 
[20,29]. For instance, in Oleksik et al.’s study of physicists’ 
lab notebooks, participants wanted the “ability to pivot on 
specific entities or attributes” to generate summaries on-the-
fly that were particularly relevant to their needs at different 
points in time [20]. Study 2’s Q2 results support this need for 
pivot views. Thus, in a history lens on a notebook cell, a user 
should be able to select the item they are curious about, such 
as a plot in an output cell. Rather than displaying all versions 
of the cell, a history lens could then display only those 
versions relevant to the particular pivot selection. Given the 
difficulties reported by participants in Q3 of study 2 with 
trusting prior results, the origins of a result and related 
dependencies must be displayed with enough detail to 
support data scientists deciding whether to trust a result. 
Tools could support this decision by showing the date, data, 
author, and code from which the results came, and alerting 
users if that exact data or code was later edited, which may 
make these results outdated.  

IMPLICATIONS FOR FUTURE STUDIES 
Our data analysis has produced accounts of three types of use 
cases, a variety of mechanisms for narrative structure and 
version control, and several design directions. As mentioned, 
these results can be viewed as hypotheses in a longer 
research program and future studies should consider using 
theoretical sampling in the following three ways.   

First, our convenience sampling did not screen for profession 
or domain of study, and our data suggest that different 
professions do different things. For example, the financial 



 

 

analysts used Excel for dissemination; the computational 
biologist said clients do not have Jupyter; and teachers 
shared notebooks, but tended not to create production code. 
Future research should sample from different professions, 
especially if designers want to produce tools for specific user 
groups.  

Second, we studied only Jupyter Notebooks and the iteration 
behaviors we observed may have been influenced by specific 
UI details. For example, managing the size of notebooks may 
not be necessary with an environment with an easy cell 
hiding capability, as is included in the JuptyerLab tool. 
Future studies may want to sample other tools to find which 
behaviors generalize.  

Finally, perhaps most importantly, the data about 
participants’ behaviors was self-reported, not observed, so 
future studies should seek to verify these hypotheses through 
direct observation e.g., [1] or fine-grained logging that could 
confirm behaviors like expand/reduce. 

CONCLUSION  
Data scientists from a broad range of domains and skill levels 
are doing impactful work through code. In this study of 
literate programming we found that programmers do create 
narrative structure during their exploration, although often 
by manipulating cell structure rather than using much 
explanatory markdown. Creating a narrative also intersects 
and conflicts with other objectives, such as participants who 
prototyped and debugged code by expanding-reducing cell 
structure, or participants who kept a clutter of old iterations 
in their notebooks to retain a history of their work. We hope 
our results will inspire future designs for ways to interact 
with notebook cells for browsing history, debugging, and 
other tasks which may improve the effectiveness of literate 
programming for supporting data science.  
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