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ABSTRACT
Data scientists are responsible for the analysis decisions they
make, but it is hard for them to track the process by which
they achieved a result. Even when data scientists keep logs,
it is onerous to make sense of the resulting large number
of history records full of overlapping variants of code, out-
put, plots, etc. We developed algorithmic and visualization
techniques for notebook code environments to help data
scientists forage for information in their history. To test
these interventions, we conducted a think-aloud evaluation
with 15 data scientists, where participants were asked to �nd
speci�c information from the history of another person’s
data science project. �e participants succeed on a median
of 80% of the tasks they performed. �e quantitative results
suggest promising aspects of our design, while qualitative
results motivated a number of design improvements. �e re-
sulting system, called Verdant, is released as an open-source
extension for JupyterLab.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); •So�ware and its engineering→ So�-
ware creation and management;
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1 INTRODUCTION
Data analysis and machine learning models have an increas-
ingly broad and serious impact on our society. Yet “data-
driven” does not actually imply e�ective, correct or benev-
olent unless the humans creating these models are able to 
e�ectively reason about the analysis choices they make. As 
part of the large legal and research push for analyses and 
models to be explainable, a data scientist must be accountable 
for their analysis choices [7]. It may help the data scientists 
be more aware and productive if, just as natural scientists 
keep a lab notebook of their experiments, they too had sup-
port to quickly record and reference what they already tried, 
under what assumptions, and with what results [27, 31]. Un-
fortunately the typical process of data science is a series 
of highly exploratory and winding small code experiments, 
making it very di�cult in practice for a data scientist to 
achieve a tidy overview of progress [15, 17].

Despite limited current support, many savvy data scien-
tists do take notes and use version control tools (e.g. Git) 
to record their work [15, 17]. Another common strategy 
is to copy all scripts, outputs, or even full computational 
notebooks to establish checkpoints [15, 17]. However, if a 
data scientist wants to answer a concrete question from their 
prior work, such as “why did I discard this data feature from 
my model?”, they need more support, including that:
Req. 1) History is su�ciently complete: the experiments 

that led to each particular choice must have been 
recorded in the �rst place. Ideally the history should 
keep all relevant artifacts needed for a user to un-
derstand an experiment (in case reproduction is not
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easily feasible) including all the plots, code, tables,
notes, data, etc. that were used [16].

Req. 2) History is reasonably conveyed for comprehension,
so that the cost of tracking down an answer is not
prohibitive.

Prior studies show that data scientists do not typically save
their history at frequent-enough intervals to capture all their
experimentation [15]. To address this requirement, recent
tools [2–4, 16] now help provide a complete or semi-complete
history by automatically capturing checkpoints of a data
scientist’s work at regular intervals, such as every time that
users run their code.

One important barrier against requirement 2 is that data
science experimentation quickly generates a large number of
versions that can be too dense from which to draw informa-
tion. For instance, when the �rst author worked on coding a
beginner tutorial machine learning problem, within about
1 hour, the code had been edited and run 302 times. Lists
of versions are highly susceptible to the long repetitive list
problem [29]. Essentially, if there is a long list of similar vari-
ants of the same document, it is a laborious process for the
user to search through them [29]. For pure code questions,
a Git expert user may be able to use Git bisect or blame
to track down where speci�c code changed. However for
visual artifacts like plots or fuzzier questions like “why did I
discard this data feature”, the user is pushed into a tedious
brute force search, reviewing version a�er version until they
�nd the information they need. As a participant from [17]
put it: “it’s just a lot of stu� and stu� and stu�.” If answering
a quick historical question would take a disproportionately
long time, a data scientist will not do it [17].

Previously, we built a Jupyter-Notebook-based code edi-
tor, Verdant [16], in which we prototyped interactions that
a data scientist might perform with their own history: ac-
tivities like reproducing outputs and comparing or viewing
versions of artifacts. In this paper, we investigate support
for the speci�c challenges that data scientists face around
question-answering from history. First, we extended Ver-
dant to serve as a base history recording infrastructure for
new history-searching designs. We signi�cantly re�ned the
history recording and retrieval mechanisms to improve ef-
�ciency (described below). To allow our designs to be eas-
ily available to other researchers and data scientists, we
freshly re-implemented Verdant to work as an extension
for JupyterLab, a publicly available development environ-
ment for Jupyter Notebooks. We then out��ed Verdant with
conventional search interactions, like a search bar for his-
tory and �lters designed speci�cally for the context of data
science activity.

With infrastructure to make history search possible, how
do we help data scientists e�ectively answer questions from

their history? Prior work from code foraging theory [14, 24,
29] has studied how programmers �nd useful information
from source code. Drawing from foraging research on how to
signal useful information out a long list of versions, Verdant
provides foraging cues like date, version previews, and diff
highlighting to show the meaningful ways that various ver-
sions of artifacts di�er [29]. �e current release of Verdant,
presented here, includes the following contributions:

• Spatial visualizations of notebook activity over time,
and techniques for interacting with them.
• Inspector interactions, analogous to the web browser

style inspector for CSS, that allow a user to click on
artifacts of interest to “inspect” the history speci�c
to that artifact.
• A new kind of notebook document, which we call a

“ghost book,” which allows the user to compare full
past notebook versions with their current notebook.
• A re�nement of our previous history model [16] with

signi�cant performance improvements. We release
this model as lilGit, an open-source extension for
JupyterLab.

Verdant provides all of these features, and is an open-
source extension to the also open-source JupyterLab so that
both researchers and the data science community can easily
acquire and extend these designs1. Finally, we conducted
an evaluation of Verdant using realistic tasks. �is study
showed that 15 data scientists using Verdant for the �rst
time were able to correctly answer a median of 80% of the
tasks they were given in a data science project that was
completely new to them comprised of over 300 versions.

2 BACKGROUND & RELATEDWORK
Data science involves yielding insights, creating models, vi-
sualizing phenomena, and many other tasks that make use
of data. Although data scientists work with a variety of
tools, including spreadsheet editors and graphical visualiza-
tion tools, writing programs using languages like Python
and R is prevalent in data science due to their power and
the wide availability of reusable open-source resources like
IPython [23] and Scikit-learn [21]. Working with data is a
need that spans almost all sectors of industry and science,
meaning that a “data scientist” can be anyone from an en-
gineer to a chemist to a �nancial analyst, to a student [12].
In our research we focus speci�cally on the creation and
prototyping parts of a data science work�ow (as opposed to
maintenance or dissemination [12]), and thus focus our tool
design work on computational notebooks, which are widely
used by millions of data scientists for this purpose [1, 18].

1Verdant: h�ps://github.com/mkery/Verdant
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Foraging in source code
Information foraging theory (IFT), developed by Pirolli and
Card [25], stems from the biological science concept of op-
timal foraging theory as applied to how humans hunt for
information. IFT includes certain constructs adopted from
optimal foraging theory: predators correspond to humans
who are hunting for information, their prey. �ey perform
these hunts in parts of the UI, called patches. In the context
of foraging in so�ware engineering, the programmer is the
predator, the patch is an artifact of the environment which
can vary from a single line of code to a generated output or
a list of search results, and the piece of information that the
programmer is looking for is the prey. A cue is the aspect
of something on the user’s screen that suggests a particular
place that they should look next.

IFT has been applied to source code foraging in a variety
of domains including requirements tracing, debugging, in-
tegrated development environment (IDE) design, and code
maintenance [11, 19, 20, 22, 24]. �e design of our tool builds
upon this work by taking into account design implications
for how programmers forage for information [12, 19, 22]
by providing speci�c foraging cues such as dates, previews,
and diff highlighting. We apply this theory to a new set
of users, data scientists, and base our experiment design on
prior foraging experiment designs [29].

Version control and collaboration
Version control and collaboration tools for data science pro-
gramming are a growing focus of both research and industry.
Although “data science” is a relatively new term, the practice
of exploratory programming with data is long established
[12] and prior work has found that data scientists underuti-
lize traditional versioning tools like Git [15]. Collaboration
in data science tasks is made more di�cult by the number
of code and non-code artifacts involved in experimentation,
which are onerous to di� or merge in a traditional code
versioning system like Git [1].

In recent work, Google’s Colaboratory project [5] avoids
this so�ware engineering �avor of versioning altogether by
providing a notebook environment in which multiple collab-
orators can simultaneously edit a computational notebook,
much like a Google Doc [6]. Although a gain for real-time
collaborative data science, this is a di�erent focus from our
current research, where we concentrate on helping data sci-
entists understand past experimentation.

Research projects like Variolite [15], our prior version
of Verdant [16], Azurite [32], and ModelTracker [8] have
all focused on helping programmers track their exploratory
work. �e distinction of our current work is that we are
focused on foraging and �nding.

3 DESIGN USE CASE OVERVIEW
Given the breadth of data science tasks, we �rst analyzed
available data on speci�c questions data scientists have artic-
ulated that they want to understand from their history [17].
We used these data to map out use cases to guide our design:

(1) A data scientist is working alone with their �nal
results as the deliverable. Over a long period of
work, they use history as a memory aid to check
their intermediary results.

(2) A data scientist is communicating their in-progress
experimentation to a colleague. For instance, an
analyst is using history to justify a model to her
boss.

(3) History is sent along with a data science notebook
for process transparency. For instance, a professor
can use history to understand how a student got to
a speci�c result on an assignment.

For now, the collaborative examples above still assume
history is coming from a single data scientist. Given the new
interaction space and the still understudied area of collabo-
rative data science, we argue starting with exploring how an
individual data scientist can navigate history is a important
�rst step.

4 DESIGN FOR VERSIONING ARTIFACTS
For the current release of Verdant, we created a version
model, called lilGit, based on Git [9], the near-ubiquitous
version control tool for so�ware engineering. Each �le in a
directory for which Git is responsible is called a “blob”, and
each blob has its own history via a series of �le-copies stored
in the hidden .git directory. What this means in practice is
that a so�ware developer can quickly access their history at
two levels of granularity: the list of commits that constitute
the history of the entire project, or just the versions speci�c
to when a particular �le was changed. �e fundamental as-
sumption that Git makes is that the so�ware developer’s arti-
facts of interest are their code �les and the commit messages.
However, this assumption breaks down for data scientists —
in a computational notebook, for instance, the document is
�lled with crucial artifacts like snippets of code, forma�ed
“markdown” text around the code, and visual output like
charts and graphs that constitute individual analyses. To
answer a �ne-grained question about a code snippet may
be done with Git using various combinations of Git blame,
grep, pickaxe, and log, all of which have their drawbacks,
such as producing many duplicate versions (grep) or not
accounting for a snippet moving around in the �le (blame).
None of these commands are particularly easy to use, and
typically fail on any kind of non-textual artifact, like a plot
or chart. �us, to give data scientists the same level of con-
venience that so�ware engineers experience with Git, lilGit
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Notebook Artifact

Markdown Cell Artifact

Code Cell Artifact Code Snippet Artifact*

Output Artifact

Figure 1: Artifacts types in lilGit. �e notebook artifact is
a singleton for the entire document. Each cell has it’s own
artifact and Code cells are further broken down into code
snippets. Code snippets correspond to the abstract syntax
tree (AST) structure of their parent code cell. �us they have
types, like function declaration or Boolean and can have
many child snippet artifacts according to the AST structure.

Notebook saved Notebook loaded
Cell run Cell deleted Cell added Cell moved

Figure 2: Events are JupyterLab UI actions that lilGit listens
to. Received events trigger lilGit to update its history data.

builds upon our prior model in [16] and Git to work at a
�ne-grained level.

Artifacts in lilGit are a hierarchical grammar shown in Fig.
1, that breaks down a computational notebook artifact into
smaller and smaller artifacts, down to low-level code snippet
artifacts, such as a single parameter value. For code artifacts,
we rely on an Abstract Syntax Tree (AST) representation of
the code to form the hierarchy. Just like each blob in Git has
its own history, each artifact holds a list of its own history
comprised of a mix of raw visual/textual data and pointers to
versions of child artifacts. For instance, to recreate the state
of a code cell artifact at a certain point in time, lilGit would
re-create the exact code from all the code cell’s child artifacts.
�is hierarchical approach prevents most duplicates so that
a user can easily access unique versions of any artifact.

�is tree history structure is is saved in a single JSON �le
called foo.ipyhistory which sits next to the user’s Jupyter
notebook �le foo.ipynotebook. �e bene�t of history in
a single �le is that it is easily portable: a data scientist can
choose to share their notebook either with or without their
history �le.

Versioning procedure
Step 1. Notebook is loaded. Open the notebook’s .ipyhistory

if it exists, and check to see if the last recorded ver-
sion of the notebook matches the current notebook.
If not, use the resolve algorithm (steps 4-6) to create
or update the history model.

Step 2. Usermakes an edit. Pick the most speci�c possible
artifact that the user edited and mark it with aF.
�is marks the artifact as potentially changed.

Step 3. Notebook-level event. An event such as a run or
save (all listed in Fig. 2) occurs, which triggers the
save of a new version to begin in steps 4-6.

Step 4. Resolve. For each artifact that is marked with a
F, estimate whether it has changed using a simple
textual equals:
(a) If no change, remove theF, which will remove

the artifact from further consideration.
(b) Otherwise:

(i) Generate the new artifact entry in the
history. If the artifact is code, process the
new code through a custom parser that
uses Python 3’s built-in AST module to
generate a new artifact tree.

(ii) Match the new artifact against the old
one. For code, this again requires program
analysis using features like type, position
in the AST, and string distance to esti-
mate the pointers between the old code
artifact tree to the new one. Any child-
artifacts that the matching decides are ei-
ther changed or new are marked with a
F.

Step 5. Commit. Starting from the leaves of the artifact tree
for the entire notebook, all artifacts marked with a
F have a new version permanently recorded. Next,
the parents of those nodes, traversing up the tree to
the notebook artifact, have new versions commi�ed
to account for the new changes in their children.
Finally allF markers are removed.

Step 6. Save to�le. Write the new model to the .ipyhistory
�le as the latest version of the user’s work.

With this process running in the background of the user’s
notebook session, Verdant’s user-facing interfaces receive
updates from this history model to display the user’s history,
as discussed next.

5 DESIGNING FOR IMPROVED FORAGING 2

�ree tabs top the current design of the Verdant sidebar (Fig.
3 at A, B, C), each supporting a di�erent foraging strategy
users can employ to answer their questions.

First, the Activity tab (open in Fig. 3) visualizes history
shown by time and event so that the user can forage based
on their memory on when and where a change occurred. A

2Verdant’s UI has evolved through many design iterations. The latest
design is shown in the �gures and discussed in the text unless otherwise
noted.
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temporal representation of history is core to many other his-
tory tools like a conventional undo pane or a list of commits
in Git. Second, the Artifacts tab organizes history per artifact
so that a user can forage based on what artifact changed and
how a certain artifact evolved over time. �ird, the search
tab o�ers a structured search through text queries and �lters,
which is useful when the users have a search keyword in
mind or when their memories of when or where to start
looking for an answer to their question are less precise. Each
interface is next described in detail.

When? Where? Foraging in the Activity tab
Consider a use case where a data scientist has been iterating
for a few hours on code for a regression, and asks “what were
the beta values from the regression I ran earlier today?” [17].
Each artifact version in Verdant is tied to a global-level event
that triggered it, e.g., a run or save of the notebook (Fig. 2).
�ese are displayed in the Activity tab as a chronologically
ordered stream of events (Fig. 3) so that the user can visually
scan down to the rough date and time that constitutes “earlier
today”.

A second global level of referencing time is the versions
of the notebook artifact (shown as #55, #54… in Fig. 3). If
each event were to have its own row in the stream, the user
would need to scroll a long way to get a notion of what had
occurred within just a few minutes. To give the visualization
a bit denser information yield for foraging, all events that
share the same notebook version are chunked into the same

Figure 4: Six design explorations of color, shape, and infor-
mation content to summarize notebook activity. �e �nal
design is shown in Fig. 3

row (e.g., #53 at Fig. 3, E). Additionally, run events that
occur in non-overlapping cells within in the same 60 seconds
are recorded onto the same notebook version. �is slightly
reduces the granularity of notebook versions, but allows the
user to see activity at a glance by minute, rather than by
seconds.

Minute by minute may serve to spot recent activity, but a
data scientist looking for “earlier today” will likely not recall
the exact minute something occurred. However, a user might
know where in the notebook they were working. Perhaps

A B C

G

D

E

F

H

Figure 3: �e history tab opens the sidebar for Verdant containing three tabs: Activity (A), Artifacts (B & Fig. 5), and Search
(C & Fig. 7). �e Activity tab, shown open here, displays a list of events. A date (D) can be opened or collapsed to see what
happened that day. Each row shows a version of the notebook (e.g. version #53) with a text description and visual minimap.
�e minimap shows cells added in green (see G) and deleted in red (F). In (E), a cell was edited and run (in blue), and the
following cells were run but remained the same (in grey). �e user can open any version (e.g., #53, H & Fig. 8) in a ghost
notebook tab for quick reference.
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the answer lies during a time when many cells were added
to the end of the notebook, or during a time when several
cells in the middle were being edited and consolidated. We
explored many designs to succinctly visualize where in the
notebook activity occurred, so that a user may rely on spatial
familiarity with their own work to visually rule out entire se-
ries of activity where irrelevant areas of the notebook were
edited (Fig. 4). Although it might be tempting to display
textual labels, as in the top le� of Fig. 4, cells in a Jupyter
Notebook are (currently) anonymous. �e bracketed num-
bers to the le� of cells in Jupyter notebooks (Fig. 3) are not
stable and change as cells are added, deleted, or moved over
time. To overcome these problems with names and to pro-
vide a tighter visualization, we were inspired by both a kind
of tiny inline plot popularized by Tu�e, called a sparkline
[30], and a variation on a common code editor navigation vi-
sualization called a minimap3. A conventional code minimap
shows a miniature shape of the code �le with colorful syntax
highlighting so that a user can click based on spatial memory
of where something occurs in their �le, rather than reading
exact lines. Prior work has suggested that notebook naviga-
tion limits the typical maximum number of cells in people’s
notebooks to roughly 60 [17, 26] and so we explored various
aspects of shape, color, textual content, etc., to summarize
key information at a glance, that would smoothly scale up
to 60 cells (Fig. 8). In Verdant’s �nal minimap design, the
notebook is �ipped counter-clockwise to show the series of
cells horizontally to conserve space. Each series of vertical
lines a�er the notebook version number represents the entire
notebook at that point in time. Each vertical line represents
a cell and a taller bold line indicates activity: blue for cell
edits, green for cell creation, red for cell deletion, and grey
for running a cell without editing it. �is representation
makes it easy to spot such common cues as where cells have
been added, or which portion of the notebook has undergone
substantial editing.

What? How? Foraging in the Artifacts tab
Consider the case where the artifact is still in the current
document, but has been changed since the older version the
data scientist is looking for. Like preceding systems Variolite
[15], Juxtapose [13] and the �rst version of Verdant [16],
we assume that allowing a user to directly manipulate the
artifact in question is the fastest way for them to start forag-
ing for an alternative version of that artifact. In Fig. 5, the
Artifacts tab summarizes each cell artifact of the notebook
using a single line, along with the number of versions it has
had, for a quick way to see the cell histories, much like a

3�e exact origin of code minimaps is unclear, but most modern code editors
have a plugin for it, e.g. Atom’s minimap package h�ps://atom.io/packages/
minimap.

CB

A

D

Figure 5: �e Artifacts tab’s table of contents view shows a
summary table. To the le� (B) is a preview of the notebook
and each cell in the notebook. To the right (C) is the num-
ber of versions that artifact has. For instance, the 2nd cell
(D) has 3 versions. Using the inspector button (A), the user
can select any artifact from their notebook, including code
snippets and output not summarized here, to see the detail
view in Fig. 6.

table of contents. However, it may well be that a user is
interested in a �ner-grain artifact, such as the relationship
between a certain parameter’s values and an output. An-
other complication is that code snippet artifacts and output
artifacts can move from one cell to the next if the user re-
organizes the notebook, such that the full history of a code
snippet artifact might not be contained in the history of just
one cell. To address these challenges, we look to a design
pa�ern from another context where there is a rich relational
document full of sub-components each with its own sets of
properties: a web page. With a browser’s style inspector, a
developer can simply point to any element or sub-element
on the active web page, and a browser pane then displays
its style properties. �is inspector interaction is tried and
tested across all modern web browsers. We mimic this with
a history inspector bu�on (Fig. 5, A) that allows a user to
point to any artifact in their notebook. Once a user clicks
on an artifact using either the table of contents (Fig. 5, D) or
the inspector interaction, Verdant provides a list of unique
versions of that artifact (Fig. 6).
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A
B

C

D

Figure 6: �e Artifacts tab showing versions of an assign
statement within a code cell (A). Each version is labeledwith
a unique version # and the notebook version it came from
(B). Below the code versions are shown all versions of out-
put (D) that were produced at the same time as those code
versions. �e user can use the inspector button (C) to select
a di�erent artifacts in their current notebook, which will
switch the detail view to the selected artifact.

Searching with cues in the Search tab
Imagine that a data scientist is looking for all tables that
included a column named “Garage” generated within the last
week. If that output is no longer in the notebook, the user
will not be able to point to it in the Artifact tab. �e Search
tab is meant to give users a start when foraging for elements
no longer contained in the notebook by searching backwards
through the history [32]. By searching for “garage” (Fig. 7),
the user receives a list of the matching versions of artifacts.
We explored showing all results from all artifact types sorted
chronologically, but this led to a glut of information for
the user to scroll through, and did not perform well in the
evaluation (below). �us, the Search results are now chunked
by artifact type and by artifact ID (Fig. 7) to lower the amount
of reading and scrolling required.

Resurrecting full revisions for context
Although our design criteria for the history tabs in Verdant
was to boil down information into small pieces for quick
reference, more extended context is needed to answer some
questions. If a data scientist wants to ask “what data was
used to generate this plot?”, the code importing the data and

A
B

C

D

Figure 7: Searching for “garage” (A). �e user can use op-
tional �lters (B). �e results are categorized by artifact type
(C). Each match is further organized by artifact. Here, 4 of
the 9 matches are versions of a table Output 5 (D).

how it was transformed to generate that plot may be spread
across multiple locations in the notebook. Although using
the Artifacts tab, the user can view the detailed history of any
artifact of cell/output size or smaller, we provide a di�erent
UI for notebook artifact versions, called a ghost notebook.
�is view allows the user to visualize a prior full notebook,
and also shows the context of how speci�c smaller artifact
versions are related to each other in that notebook. As shown
in Fig. 8, the ghost notebook is immutable, highlights where
changes were made in that notebook version (Fig. 8, D),
and has a di�erent background color from the user’s active
Jupyter notebook to avoid accidentally confusing the two.
�e two notebooks can be viewed side-by-side, allowing the
user to compare the older ghost notebook to their current
notebook. �e user can also open multiple ghost notebooks
to compare across multiple historical states. An example use
case for this would be to compare versions of a code �le side
by side [10] to �gure out “what changed?” between an earlier
working version of the notebook and one that contains a
bug.

In addition, the ghost book has a toggle (Fig. 8, C) to
show or hide cells una�ected by the edits and runs in this
version. �is allows users to hide the vast majority of cells in
a long notebook and focus their a�ention on the di�erences
in this ghost book. Note that cells are still marked as a�ected
when they are run and compute a value di�erent than the
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A

D

C

B

Figure 8: �is notebook has about 60 cells. �e user clicks a row (A) for version #104 of the notebook in the activity tab, and
a Ghost Notebook (B) opens that shows the full details of the notebook at version #104. To make it easier to see the changes,
the Notebook has a toggle button to show all cells, or only cells that were run or a�ected during that version (C). At (D),
conventional di� notation shows characters that were deleted in red, and in green characters that were added in that version.

previous execution of that cell, even if their code was not
edited. For example, editing one cell to change a variable’s
value might dramatically change a graph output produced
by a subsequent cell even if the subsequent cell’s code was
not edited.

6 EVALUATION OF VERDANT
�e primary goal of our evaluation was to gather data about
how the features of Verdant assist or hinder data scientists in
performing realistic foraging tasks. We had received positive
feedback about our ideas from data scientists throughout the
design process, so in this evaluation we sought task-based
behavioral data to con�rm or refute those positive opinions,
and provide guidance for redesign. As Verdant is an exten-
sion to JupyterLab, we coordinated closely with the Jupyter
Project and ran our study at their JupyterCon2018 confer-
ence. JupyterCon annually gathers a concentrated group of

data scientists, from a variety of sectors, with experience
in computational notebooks, providing an opportunity to
collect data from professionals with a range of experience in
a short period of time.

Challenges and Limitations of the Study
A conference se�ing presents considerable challenges to
testing a complex tool intended for long-term use by expert
users on their own code. Table 1 lays out these challenges
and our approach to addressing them.

A major di�erence between the primary use of a history
tool, i.e., querying previous versions of your own code, and
what we can study at a conference, is that we had to ask par-
ticipants to �nd things in another person’s code. Examining
other people’s code does happen in the real world, e.g., a
manager of data scientists told us that he would �nd Verdant
useful for understanding his employees’ thought processes,

Table 1: Constraints of Testing in a Conference Setting

Data scientists in the real world… Conference attendees… Study design to address limita-
tions

Work on code for hours, days, or
weeks.

Have a maximum of 30 minutes be-
tween conference events.

Following [22], we created a substan-
tial notebook. Participants were not
asked to write code.

Can take weeks to become skilled with
the features of an advanced tool.

Have no prior experience with the
tool.

We created a short tour of the tool’s
features.

Would use tool for their own code,
aided by their own memories of their
work.

Have no prior exposure to the code we
presented to them.

We based the code on beginner tuto-
rials in a simple domain (house sale
data).

Have complex, idiosyncratic questions
and understand results speci�c to their
own work.

Have no knowledge of what questions
are important for this code. Cannot
create questions or necessarily recog-
nize the answers.

We based questions on prior data [12],
substituting explicit goals for what an
author would be able to recognize, e.g.,
a picture of the chart to �nd.
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and professors sometimes grade student code on the basis
of the process they employed as well as the end-product.
Another di�erence is the skill with the tool itself that a data
scientist would build up through long-term use. Both of
these problems could be overcome through a longitudinal
study or studying professional data scientists a�er they had
used Verdant for several months, which we hope to do in the
future.

However, we believe the lack of skill with the tool, no
knowledge of the code, and limited time to do the tasks
can bring into stark relief any shortcomings in Verdant’s UI
design. �e problems and virtues of Verdant’s UI uncovered
through performing tasks here give us a glimpse of how
useful Verdant would be at least for novice users and what
we would need to do to improve it.

Materials
The Evaluated Verdant JupyterLab Extension. We tested a

version of Verdant, which we will call the “evaluated version”,
which was revised from the version described in [16], and
prior to the current version described and pictured above.
�e current version resulted from redesigns based on the
data collected with the evaluated version and the di�erences
will be discussed in the qualitative analysis section below.

The Notebook. In order to create a realistic data science
notebook history that both contained substantial experimen-
tation and was simple enough for most participants to under-
stand in a few minutes, we looked at some of the many data
science tutorial notebooks available on the web. �e �rst au-
thor created a notebook from scratch by following Kaggle’s
machine learning tutorial level 1 on a housing selling-price
dataset, followed by copying in and trying out code from
Kaggle community notebooks from a competition with the
same dataset4. Creating a notebook this way, relying heavily
on a variety of other programmers’ code, was intended to
reduce any bias that the study notebook history would be
too speci�c to one programmer’s particular coding style. �e
resulting 20 cell notebook contained over 300 versions.

The Tour. We wrote eight pages overviewing the tool’s fea-
tures and how they worked. Each page contained a screen-
shot and annotation that drew a�ention to a feature and
explained how it worked. It took less than 3 minutes to read
through this document, and participants could refer back to
it at any time.

The Tasks. In a prior needs-elicitation survey at Jupyter-
Con 2017, we asked data scientists “Given your own work
practices, type as many [questions] as you can think of that
4Tutorial: h�ps://www.kaggle.com/learn/machine-learning, and competi-
tion:
h�ps://www.kaggle.com/c/house-prices-advanced-regression-techniques.

could be helpful to you to retrieve a past experiment” [17]. We
converted some representative questions from the data sci-
entists into tasks for the current study. Since the participants
did not write the notebook, we had to substitute explicit
goals for the memories a notebook author would have when
se�ing foraging goals. For instance: “how did I generate plot
5” became a task “Find a notebook version that generated a
plot that looks exactly like this [image shown]” and “What
data sources have I been using over the last month?” became a
task “How many di�erent data �les has this notebook been run
on?”. We generated 15 tasks across 4 task categories (Table
2).

Table 2: Tasks and number of each task category used

Category # Example
Notebook event 3 Find the �rst version of the note-

book

Visual �nding 3 Find a notebook version that gen-
erated a plot that looks exactly
like this [image]

Code �nding 3 Find the code the author used to
check for duplicate houses

Relation between
multiple artifacts

6 What was the lowest mean ab-
solute error achieved when the
author used a RandomForestRe-
gressor?

Participants
JupyterCon2018 provided a User Experience (UX) “Test Fest”
room where four organizations set up testing sessions and
advertised its availability in the conference program, as slides
in meeting rooms between sessions, by some presenters in
their talks, and on social media. We recruited 16 participants
who came to the UX room (referred to as P1 to P16). Due to

Table 3: Data science domain of participants. Some
participants have multiple domains.

Computational Domain Participants
GIS or Earth science P1, P8
Economics or Finance P2, P9, P12, P16
Healthcare P3, P4
Biology, Chemistry, or Physics P4, P15
HCI or Computer Science P5, P14
Social Science P10
Not reported P6, P7, P13
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equipment issues that arose during P11’s session, P11’s data
will not be considered for analysis, leaving 15 participants.
As shown in Table 3, participants performed data science
work across a wide range of domains.

Although all participants reported programming experi-
ence, one participant reported never having used Python,
and one other participant had never used a computational
notebook tool, although by a�ending Jupytercon they would
have been exposed to such tools in the presentations. Overall
we argue that this is a fairly representative sample of data
scientists, except for gender (14 male, 1 female). Two partici-
pants had time constraints that interrupted the study, so one
a�empted 5 tasks, another just 2 tasks, and the remaining
13 participants a�empted 6 tasks each.

Procedure
When participants came to the UX room, they �rst �lled
out an online demographic survey. A greeter asked how
much time they had to spend testing and, if they had at least
1/2 hour, they were told that a prototype of a JuptyerLab
history tool was available to test (among several other types
of available activities). When they chose this activity, they
were shown to our station and were seated in front of a 27”
display, with a keyboard and mouse. �ey were �rst given
the on-line Tour document to read. �ey were then given
tasks, one at a time, wri�en on index cards and asked to think
aloud while working. �e order of tasks was randomized
across participants using Latin square prior to the study.
Screen-capture so�ware recorded the screen and an audio
recording was made of their u�erances as they worked. As
they completed each task, they were given the next card, until
they ran out of time and had to go back to the conference
sessions. Participants completed no more than 6 tasks each,
but all tasks and categories had coverage.

7 QUANTITATIVE ANALYSIS
With an audio and screen recording of all sessions, the �rst
author �rst reviewed the recordings to note whether a par-
ticipant had succeeded or failed each task, based on an an-
swer key. During this process, the authors eliminated two
tasks from analysis: Task K (1 participant) became infeasi-
ble during the experiment due to a bug in our prototype.
�e wording of Task H (5 participants) was ambiguous and
various participants interpreted it di�erently. With the re-
maining 13 tasks, there were 80 foraging instances across
the 15 participants.

We used success rate as an indication of how well Verdant
supported the users in accomplishing tasks. �e average suc-
cess rate of the participants was 76% (median = 80%), which
puts the evaluated version of Verdant close to the average
task success rate of usability tests across many domains [28].

Table 4 shows that more than half the participants succeeded
at greater than 80% of the tasks they a�empted and 20% suc-
ceeded at all of their tasks. Despite being asked to answer
questions about a substantial notebook they did not write,
having to forage through over 300 versions of that notebook,
and having no experience with this complex tool, the major-
ity of participants succeeded on the majority of tasks they
a�empted. For comparison, data scientists interviewed in
[17] reported making many local copies of their notebook
�les. Imagine giving our participants over 300 �les and ask-
ing them to answer a series of detailed questions about them.
Many participants would have run out of time or given up.
Even if our participants used Git, as discussed above, they
would have had to learn complex command-line search tools
and tasks involving graphic output may have been simply
impossible. �us we consider a median 80% success rate to
be evidence that the design of Verdant has promise but could
be improved.

Table 4: Participant overall success rate

Success rate range Number of Participants
100% 3
80%-99% 6
67%-79% 4
33% 2

At this stage of development the overall success rate is
interesting, but the di�erential success rate between tasks
is more important for further design as it helps us focus on
which tasks are more problematic for users. Turning to task
success by task category (Table 5). the most di�cult kind of
task, “relationship between two artifacts”, which required
hunting down and then relating versions of two or more sep-
arate artifacts, had the lowest success rate at 66%. Otherwise,
there was no clear relationship between speci�c tasks we
had a priori considered to be more “easy” or “complex” based
on the number of steps required to accomplish the task. For
instance, the tasks at which participants had 100% success
were task N: “How many di�erent data �les e.g., ‘data.csv’ has
this notebook been run on?” (easy, at 3 steps) and task I: “What
was home features equal to when the mean absolute error was
below 20,000?” (complex, at 12 steps).

8 QUALITATIVE ANALYSIS
We turn now to a qualitative usability analysis that investi-
gates which features of the evaluated Verdant UI were helpful
and which may have hindered participants in accomplishing
their tasks.

To analyze the think-aloud usability data, we �rst deter-
mined the most e�cient method to do each task and the
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UI features that were involved in those methods. We then
watched the videos and noted when participants followed
or deviated from those methods, as well as positive and neg-
ative comments about the features, and suggestions that the
participants made. We used the di�erential success rates
discussed above to focus our a�ention on the tasks with the
lowest completion rate.

�e data provided information at many levels, from com-
ments on the tour, to buggy behavior, to complaints about
low-level UI features like labels or icons that users found
inscrutable, to issues with the high-level functionality. As an
example of the la�er, a data scientist in the Healthcare indus-
try (P4), was concerned that Verdant saved outputs, saying
“We avoid ever checking data into a version control thing. If
it was always saving the output, we wouldn’t be able to use
it.” We will use all this information in future development of
Verdant, but for the purpose of this paper, we focus on three
problems: confusion about how to navigate within Verdant,
the need for excessive scrolling, and participants resorting
to brute-force looking through ghost books.

For the tasks with the lowest success rate, O and G, partic-
ipants would o�en click something and not know how to get
back to where they had been. One third of our participants
articulated the equivalent of “How do I get back?” in these
two tasks alone (P1, P5, P9, P12, P16). Looking more broadly,
more than half of the participants (8/15) articulated this prob-
lem across 9 of the 15 tasks, with many more clicking around
trying to get back without explicitly voicing their need.

To illustrate the scrolling problem, in Task F, the partici-
pants had to �nd a particular heatmap. �e heatmap had been
added sometime during the 300 versions, had been changed
several times (the desired answer being one of those ver-
sions), then deleted. Of the 6 participants a�empting this
task, 5 immediately selected the correct feature (then called
the Run Save tab) and the correct action (text search). P9
succeeded in 6 seconds because he had performed a graphic
search task before and knew to keep scrolling through the
results. Four others succeeded within 3 minutes, performing
actions in addition to the most e�cient method (all tried
ghost books; 2 tried the Inspector Tab, which is equivalent to

Table 5: Success by task category

Task category # a�empted mean suc-
cess

Notebook event (A, B, C) 21 78%
Visual �nding (F, L) 10 79%
Code �nding (D, J, N) 17 81%
Relation between two ar-
tifacts (E, G, I, M, O)

30 66%

the current Artifact Tab) and those actions provide clues to
be�er design. Consistent with Information Foraging �eory
[25], these detours suggest that having to scroll too long be-
fore �nding promising results causes people lose con�dence
in the information patch and abandon it.

At a higher level, we observed many participants resorting
to a brute-force search. “It’s obvious if I looked at all of these
[ghost books], then I’d know the answer, but there’s got to be
a smarter way to do this.” (P6) �ey opened up one ghost
book at a time until they reached the solution or became
so frustrated they switched their foraging tactic (such as
searching with a di�erent term) [24] or else quit the task
altogether: “I found 22 things… I can �nd it, but I’m not sure I
have the patience.” (P3). One participant (P10) to our surprise,
sat for a full 6 minutes and read through 39 di�erent ghost
books before reaching an answer. Although none of the tasks
actually required using brute-force search of ghost books, it
is a problem that users got to a point where they thought
brute-force was the only solution available to them.

�ese three problems, together with other evidence too
numerous to include here, inspired us to redesign the evalu-
ated Verdant to reduce the need to switch tabs, scroll, or open
many irrelevant ghost books. �e evaluated Verdant had two
text search �elds, one in each of the tabs, each with slightly
di�erent behavior. We redesigned the current Verdant to
have a separate Search tab that combined the functionality
of the two individual searches (Figure 3, C). �is reduced
the need to switch between tabs to see the di�erent search
results. Further, more visible �lters (Figure 7-B) helps users
focus on the types of cells they are looking for, as do the col-
lapsible category sections (Figure 7, C). �ese sections keep
relevant results together and minimize the need to scroll
or open many ghost books. �e current design of the tabs
(Figure 3, A, B, C) hopefully will make it easier for users to
know how to return to previous views.

9 CONCLUSIONS & FUTUREWORK
�is paper presents a novel system to help data scientists
examine the history of their work. Our design and evalu-
ation focused on �nding speci�c artifacts, since this is the
�rst step in understanding what and why things were done,
and retrieving discarded work if warranted. E�ciently and
automatically recording events ensures that the code is al-
ways there to be found, removing the requirement that data
scientists take the e�ort to checkpoint each change as they
do their experimentation. Using Information Foraging �e-
ory [25] and speci�cally, code foraging theory [14, 24, 29], as
inspiration when designing the UI yielded a tool with which
data scientists could succeed at a median of 80% of realistic
tasks in querying a large notebook.
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Our evaluation collected task-based behavioral data as
well as opinions and suggestions from professional data sci-
entists. As future work, we have a trove of bugs to �x, UI
elements to tweak, and more areas to redesign than we could
present here. We will take all this information into account
in future development of Verdant.

While data from people who have only known Verdant
for a few minutes is valuable, since Verdant is a complex
tool that people need time to learn and the base-case for
history tools is people using them on their own code, we
plan to deploy the current Verdant and perform long-term
studies. In addition, we will deploy Verdant for general use,
and welcome interested parties to use it and provide feedback
as is common with all JupyterLab extensions.

Some issues that emerged from the evaluation are par-
ticularly interesting for future research. First, although we
addressed the issue of navigating among the di�erent fea-
tures of Verdant, this may be a more pernicious problem than
our current design can solve. We plan to do a broader design
exploration to see if we can integrate the functionality more
fully and smooth the transition through di�erent search and
�lter strategies.

Second, participants had di�culty understanding the �ow
among the changes in one cell or one version, and how
changes ripple through to later versions. �is �ow brings
history understanding into the realm of narrative. Good
narrative smoothly ties a series of events together with the
key causal and context information needed to make sense of
it. We plan to explore the possibility of automatically creating
narratives to communicate changes that are separated in both
space (di�erent cells) and time (di�erent versions).

�e iterative design process being used to create Verdant
has proven very e�ective at identifying the requirements
and barriers for data scientists in exploring the history of
the exploratory programming that goes into computational
notebooks. �e features in Verdant are a promising approach
to e�ectively navigating that history. We hope that be�er
communicating a history of experimentation will sca�old
data science programmers to follow be�er practices and
more e�ectively experiment.
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[23] Fernando Pérez and Brian E Granger. 2007. IPython: a System for In-
teractive Scienti�c Computing. Computing in Science and Engineering
9, 3 (May 2007), 21–29.

[24] D Piorkowski, S D Fleming, C Sca�di, M Burne�, I Kwan, A Z Henley,
J Macbeth, C Hill, and A Horvath. 2015. To �x or to learn? How produc-
tion bias a�ects developers’ information foraging during debugging.
In 2015 IEEE International Conference on So�ware Maintenance and
Evolution (ICSME). 11–20.

[25] Peter Pirolli. 2007. Information Foraging �eory. In Information
Foraging �eory. 3–29.
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